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Abstract

This thesis adIdresses a number of theoretical issues in parallel computation. There
are miany open questions relating to what can be done with parallel computers and what%
are the most effective techniqueis to usC to dlevelop parallel algorithms. We exainc various
Jproblemis i!n hope of gaining insight to the general questions.

One topic that is investigated is the relationishiip between sequential and p~arallel al-
gorithmis. Wc introducethli concept of a P-complete algorithin to capture what it means
for an algorithmin to be inherently sequiential. We show, that a nunmber of sequential greedy
algorithms are P-complete, including the greedy algorithm for finding a path iii a graph.
However, a problem is not necessarily difficult if ani algorithm to solve it is P-complete. In
sonie cases, the natural sequential algorithmn is P-complete but it different technique gives
a fast parallel algorithmi. This shows that it is necessary to uise diff'erent techniques for

parallel computation than are used for sequential computation.
We give fast parallel algorithmns for a number of simple graph theory problems. Thc

algorithms illustrate a number of different techniques that are useful for p~arallel algorithms.
Trhe most itmportant results are that the muaxinmal p~ath problem can be solved in RNAC and
that a depth first search tree cami Ie constructed in 0(n'/'' parallel time. T]his shows
that substantial speed up is possible for both of these problems using parallelism.

Trhe finmal topic that we address is parallel approxinmation of IP-complete problems.
P-comiplete problems probably cannot be solved by fast parallel algorithmns. We give a
number of results on approximating P-coniplete with parallel algorithms that are similar
to results on approximnatinig NP-complete problenis wit~h sequenitial algorithms. We give

* u~tpper andl lower bounds on the (degree of approximationm that is p)ossible For sonme problems.
We also investigate the role that numbers platy in TP-coimplete p~rolem~is, showing that sonie
I -comuplete pirolems1 remtain (difficult eveni if Lit! tnummbers are small.
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Chapter 1 Introduction

1.1. Parallel Computation

Parallel computation offers substantial opportunities for performing computations
faster than they can be done with just a single p~rocessor. In some cases, problems can
be decoiiiposed into independent sub~problemis, with each sub~probleml being solved simiul-
tancously. Ideally, this allows a speed tip in the computation proportional to the number ~
of processors employed. Trhere are, however, miany difficulties in parallel comuputation.
Some of the difficulties are technological, relating to such issues as processor synchro-
nization, resource contention, and wiring together processors. Other difficulties are more
algorithmic in nature. Thiese include the partitioning of problems into subproblemns and
the prograinlining of parallel machines.

There is aI suibstantial difference l)etweerl parallel and sequential algorilhus. Sequen-
tial algorilmus can take adlvantage of niany intermediate results. 1rocessing can be done
one step at a time, basing each dlecision on th~e previous decisions muadle. However, for a
parallel algorithm to be efficient, the problem imust be decomposed so that progress can
be made 4n niany suibproblems at time samte timie. This often requires a very different
app~roach dhait is used in sequential algorithms.

Two or thle umost important questions relating to parallel computation aire: Wvhat
are the lpro)Idis that can be solved by fast parallel algorithmns, and whiat general tech-
nliquesC work for parallel algorithlims. Essentially the questions are "what," and "how." The
chussilication prmblvill is Lo ident Iify the( Jprolbleiils that call b~e effectively parahlelized and -

also to idlenItify the hprob~lems that require sequential processing. The othier problem is to
idlentify general algori.himiic tchlniques. There are a nuniber or general techiniques that
are conintmonly emplloyedl in sequtenitial algorithims, such a-- divide and conquer and dynamic
proEgramninig. It is imiportant to deCvelop a similar set of alplroachies for p~arallel algorithms.
There are currently just aI few techniques used in Iparallel algorithms, It is hoped that new
techiniqutes can be developed.

The goal of this thesis is to study particular prob~lems to gain insight into these general
questions. We take a theoretical approach by adopting an ab~stract muodel of parallel b

complutation. Tme imodlel of computation that we use is the 1-RAM mlodel. This is an
idealizationi of a parallel machiie. Most of the p~rob~lemus thiat we look at are very simple
fromi thme sequential point of view. hlowever, these problems turn out Lo b~e a challenge to
parallehize and illustrate imany of the issues involved in parallel comuputaution.

The study of parallel computation is very broad, andl this thesis addresses issues re-
lated to only a portion of it. We are only concernedl withi what could be called "inherent
parallclisin." Thiis refers to the p~arallelismn possible in ant ideal conmputer, whecre iunit cost
commnunication is available between all processors and memories, anid there are no con-
straints imiiposedl by physical layolut. We nleglect such issues as Coi)mmummicatiomu Compllexity
and thme layout of processors, although they are important, both in theory and in practice.



The next section covers some preliminary results that we base our work on. The dis-
cussion covers our model of parallel computation and also covers some of the methods that
are available to show that problems are inherently sequential. Following the preliminary
material is a discussion of some of the general issues in parallel computation. This thesis
has three chapters of technical results. Chapter 2 is concerned with the relation between
sequential and parallel algorithms. It discusses ways to show that certain algorithms are
inherently sequential. Chapter 3 discusses some algorithms for certain path problems.
The algorithms illustrate a number of important general techniques. Finally, Chapter 4
discusses ways to approximate problems that probably cannot be solved by fast parallel
algorithms. The chapter shows that there is a high degree of similarity between parallel
and sequential complexity theory.

1.2. Preliminaries

A substantial amount of work has been (lone in studying models of parallel computa-
tion in order to identify the appropriate theoretical basis for parallel coimptation. In this
section we discuss sonie of the results that are directly relevant to our work. We do not
attempt to give a complete survey of the various models of parallel computation. There
are a number of papers that survey the work that has been done, including papers by Cook
1CI], and Hoover and Ruzzo [IRl.

1.2.1. The P-RAM Model

The stanidard model of synchronous parallel coimiptatation is the P"-IA M (J'arallel Ran-
do(1 Access Macliine). ''lhis mu odel captures the intuitive idea of wlhal. a parallel m'achine
is. The P-H AM mnodel has lbeen lescrilbed by a num,,ber of authors lu"WJ 1G21. A P-RAM
consists of a set of processors, '1,. ., 1'11 and a set of global memory cells, M1 ,... , MA,,,.
E,'ach processor is a H AM IAIIUJ," with its own local umeamory. A processor can perform
some standard arithmetic operations and can access its own neimiory with direct or indi-
rect addressing. A processor can also comnmuiicate with the global imemory by reading a
value from or writing a value to any global mniemory cell. The global memory accesses are
assumed to take unit time. This is one of the major idlealizations of the IP-RAM model. In
a real parallel computer, one would expect that the access time is related to the number
of processors. A P-RAM has a single program that all processors execute one step at a
tine. Each processor has a register which contains its processor nmiuer and instructions
may depend on this number, so different processors may do different things on the same
instruction. Some of the global memory cells are designated for the input to the problem
and some of them are for the outputs. The time taken for an algorithm is the number of
instructions that are executed. The space is the 811111 of the number of processors and the
nuiber of inemory cells.

There are a niumber of variants of the P-RAM model that handle concurrent reads nd
concurrent writes to the global memory cells differently. The major variants are exclusive
read, exclusive write (EllEW), concurrent read, exclusive write (CREW) and concurrent
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read, concurrent write (CRCW). For the latter model, there are additional variants on
the nature of concurrent writes. There is a difference in the power of the various types %'

of P-RAM. For example, it is trivial to compute the OR of n inputs with a CRCW P-
RAM in constant time, while on a CREW P-RAM the problem requires Q(Iogn) time
[CD]. There are also separation results for the various diflerent types of CRCW lI-RAMS
[FRW]. However, the differences in the power of the models is not that great. It is not
hard to show that a single instruction of an n processor, m memory CRCW I-RAM (any
variant) can be simulated by an EREW P-RAM with nm processors and nm memories in
O(logn - logm) time. In this thesis, we use the CREW model. However, we are not that
interested in the exact time or processor bounds of our algorithms, so our results carry
over to the other variants of the P-RAM model.

• 1.2.2. Fast Parallel Algorithms

In this thesis, we deal with problems that can be solved by "fast" l)arallel algorithms
that use a "reasonable" number of processors. The generally accepted definition of fast
and reasonable is polylog (O(logk n)) parallel time and a polynomial number of processors
JP1. This class is commonly referred to as NC. The problenis in N/C aire probleis for
which an exponential speedup is possible using parallelism; these prol)lems can have their
running timies reduced from polynoimial to polylog.

One of the reasons why ).C is broadly accepted as the appropriate class to use in the
study of parallelisim is that it is a very robust coiplexity class. VC remains the sanme
whether it is defined in ternis of any variant of the J -RAM imodel, or in ternis of some .
other imodels, such as uniforim circuits I131h1ul. More refined classes, such ;as )ro|,le~is that
can he solved in O(logn) or O(log 2 n) parallel time depend ti pI the partictilar itiodel of
computation that is used. Even the weakest model of a I'-IHAM is an idealization of the

type of niachine that could actually be built. To convert the model to a more realistic
model, such as a bounded degree network ISci, a slow down of a factor of at least logn
is needed. The theoretical models, however, are accurate models when factors of logn

i-" are ignored. The advantage of JVC is that it allows us to ignore the factors of log n that
separate the various models.

The class R.MC is the probl)abilistic analogue of VC. It denotes the set of i)roblenis
that can be solved with a probabilistic P)-RAM in polylog time with a polynomial number
of processors. There are several ways that randonness can be introduced into the l'-IAM
model. For example, the processors can be given coins to flip or certain imemory locations I%
can be assigned random values at the start of the program's execution.

One of the drawbacks of the class JVC is that many N/C algorithmus are reasonable
only when the mnuber of processors is very large. The basic i)roblei is that log k n is not
a slowly growing function when n is small. The following table shows how large n must

4k
be so that n> log n for several values of k.
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4 k n

2 16
3 982
4 65,536
5 5,690,333
6 621,201,921

For example, if the constant factors are the sane, an O(log 3 n) algorithm is not
better than an O(n) algorithm until n is about one thousand. The size of n where an
O(Iog3 ,n) algorithm is superior to an 0(n'/') algorithm is astronomical. Showing that a
problem is in NC is just the first step to getting a practical algorithm for the problel.
The problems in AfC can in principle be solved by fast paralel algorithms; they are not
inherently sequential.

1.2.3. The Parallel Computation Thesis
J

Parallel time is closely related to sequential space. The parallel computation thesis is: -P
For all reasonable models of computation, parallel time is polynomially related to sequential
space [G21. The equivalence of parallel time and sequential space has been proved for a
number of specific ,,,o(lels inchiding alteriiating Tliring machines C KS], circuits [1 and
I'-RAMS [l'WI ]Wy]. Let I'TI ME(T(n)) lenote the class of p~roblems that can. be solved in
O(T(n)) time o a CREW I'-IRAM and I)SI'ACE(S(n)) denote the chss of prohemms that
can be solved in O(S(n)) space on a imiltilape 'iring machine. (For seuential sp~ace, only
the work space is couinted; the iniput is given on a separate read-only tape). It is shown
in FW] that l'clMl,(r(n)) ( I)SI'ACI,(T(n)) and 1)SI'ACl'(S(n)) C Il'TlMl'(S(n)) for
S(n) ? log n.

The relationship between XC and Turing machine space is:

DSPACE(logn) C NSPACE(logn) C NC C U DSPACE(logk n).
1C>O

To show that DSPACIE(Iogn) C NC, it is necessary to show that a Turing machine that
uses O(logn) space call be simulated with a I)-iAM with polynomial size. The size is a

polynomial since the number of possible states of the O(logn) space Turing machine is
0(nk). A similar proof can be used to show that an O(logn) space non-deterministic
Turing machine can be simulated by a 11-RAM with polynomial size. The space efficient
simulations of a polylog time Is-RAM do not in general give polynomial time algorithms.
However, NC C P, since a polynomial number of processors can be simulated by a single
processor with a polynomial slowdown.

4
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1.2.4. P-Completeness

One of the most difficult areas of complexity theory is lower bounds. Very few non-
trivial lower bounds are known for general models of computation; this holds for parallel
computation as well as for sequential computation. A different approach, which has proved
far more successful is to show problems to be at least as difficult as other problems. The
notion of completeness is a way to identify the most difficult problems in a particular class.
A problem A is complete for a class C if it is in C and all problems in C are reducible to it
by some appropriate form of reduction. If the problem A could be solved efficiently, then
all problems in C could be solved efficiently by using the solution for A.

The parallel computation thesis allows us to apply results on space complexity to
parallel computation. We show problems to be log-space complete for P (P-complete) to
provide evidence that they are difficult to parallelize. A problem is log-space complete for
P if it is in P and all problem in P are reducible to it by log-space reductions. A problem
A is log-space reducible to a problein B if there exists a log-space Turing machine that
converts instances of A into equivalent instances of B. Log-space reducibility is transitive,
i.e., if A is reducible to B and B is reducible to C, then A is reducible to C. This means that
if a P-complete problem could be solved in O(logk n) space, then P C I)SPACE(log k n).

If a prol)iem is P-complete, then it is unlikely that there is a fast parallel algorithm for
it. Log-space transformations can be done in O(log n) tine on a P-RAM using a polynomial
number of processors, so the P-complete problems are the most difficult problems in P to
l)arallelize. If a P-complete l)rol)lum is found to be in .AC, then P - )C and P C
uk>l)S!ACE(log n). If this were the case, then all problems in P could be solved very
fast in parallel and could be solved sequentially using r,, little space. Both of these are
considered to be very unlikely. There is of course, no known proof that P / MIC, ,as there
is no known proof that P / J1P.

Many problems are known to be l'-complete. An important P-conmplet.eness result is
that the I)roblhin of conmlpu ting the value of a circuit given its inputs is IP-comIlete [LTad].
We discuss 1 is plrhell in the next section. Other im)ortaint IP-com hp ! )roblems are
network flow LCSSI, linear programming II)I,1R, and unilication [L)KMJ. A list of currently
known l'-complete problems has been conaplied by loover and luzzo 11111.,

l'-coinpleteness is defined in ternis of language recognition, so according to the def-
inition, we are restricted to discussing problems that have a yes/no answer. However, it
is often the case that we are interested in computing functions instead of just recognizing
languages. For example, in the network flow prollem, we wish to comupute the value of
the maximuni flow in a network. One way to extend the definition of P-completeness
to functions is to introduce a language associated with the function. For a function
Sf: {0, 1} -, {0, 1}*, we define the language

L!=--: {(x, k, a): The k-th bit of f(z) is a}.

By definition, the problem of computing f is l'-complete if tle problem of recognizing Lf
is l'-comlh-te. The )roof that network flow is I'-complete CSS I actually shows that the
problem of computing the least significant bit of the imaximum iflow is P-complete.

5
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1.2.5. The Circuit Value Problem

The fundamental P-complete problem is the circuit value problem. The circuit value
problem is: Given a circuit with values for its inputs, compute the value of its output.
The circuit value problem is clearly in P, since it can be solved by evaluating the gates
one at a time. Intuitively, a proble1. is P-complete if it is sufficiently powerful to simulate
the computation of any polynomial time bounded Turing machine on a given input. The
proof that the circuit value problem is P-complete is a generic reduction from an arbitrary
problem in P.

A problem can be shown to be P-complete by giving a log-space reduction from a
known P-colmplete problem to it. The circuit value problem is by far the most frequently
used problem for P-completeness proofs. The reason for this is that the circuit value prob-
lem seems to capture the complexity of P-completeness and the structure of tle problem
very often makes it convenient to use in reductions. Its role in P-completeness is similar to
the role of satisfiability in NP-completeness. We now give a precise definition of the circuit
valte problem. A circuit, is a string f 3 ,..., [,, where fl, is either an input, (0-INPUT
or I-INI'1UT), or a gate ANI)(j, k), 011(j, k), or NOT(j). The inputs for a gate are lower
numlbered gates, thus the gate /3i - AND(j, k) receives its inputs from the gates /#, and

Afk with j < i and k < i. The circuit value problem is to determine if a given string is in
tile language of all circuits that evaluate to true.

There are a number of important variants of the circuit value problem that are P-
complete. The circuit value problem is P-complete for any collection of gate:i that form
a complete basis, for example {NOT, OR) or {NA NI). The circuit value problem is also
P-coimplete for monotone circuits, i.e., if the logical gates are ANI) and OH [G] 1. A second

* version of the circuit value prol)lem that is Is-complete is the planar circuit vali'e problem
J" '. "The problei is to evaltnate a circuit, that is laid ont oil time plane wit hou. wires
crossing. 'rte inputs are assunmed t- be along one edge of the circuit. Tile mionotone
planar circuit value problem, however, is ap~parently not P-complete, since it cam be solved
in NC [DC IRtu[.

There are a numiber of minor restrictions of the circuit valtic problem that are also
P-complete. These are mentioned because they imake a number of I)-completeness proofs
cleaner. The first restriction is that the gates are limited to having fanout at most two.
It is not hard to simulate arbitrary fanout with a fanout two circuit by introducing extra
gates. In all of the P-conipleteness proofs we give in this thesis we assume the logical gates
are restricted to fanout two. We also assume that the inputs (0-INPUT and I-INPUT),
have fanout one. A second restriction is that the circuit can be assumed to be laid out
in levels, with each gate connected only to gates on a(jacent levels. The planar circuit
value problem remains l-complete with this restriction even when the gates are rcstricted

to NOT and OR (a one input OR is allowed). This variant is used in a proof in the next
chapter.

P-completeness proofs are very similar to NP-completeness proofs. First, the problem
must be shown to be in P. In most cases of interest, this is obvious, linear programnming
being a notable exception. For a reduction from the circuit value prollent, it is necessary
to simulate a circuit. This entails having a way to represent the vlues true and false. It is

-'.o also necessary to be able to coimbine values to simulate the gates. Often, the dillicult part

6
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of a P-comipleteness proof is fanning out values. To fan out a value, it mutst be replicated
so that two other gates can receive the value. A technical dletail in P-conipleteness proofs
is to mnake sure that values are only propagated in the p~rop~er direction. If care is not
taken, values inay be propagated backwards, interfering with earlier gates. A final issue in
P-coiiipleteness proofs is that the reduiction niust be at log-space reduction. The types of
local transformiations that are commnonly done in NP-conipleteiiess p~roof,; canl be (lone in
log-space. The proofs that a transforination can be done iii log-space is generally omnittedl
front a P)-comipleteness proof.

1.3. Parallel and Sequential Algorithms

There are essentially two ways to (designlia parallel algorithin. One can either start with
a sequential algorithinn for the problein and attemipt to adapt it to a parallel mnachine, or one
call start fromt scratch and dlesign at parallel algorithmn. Tlhe first approach is appealing for
a nuinber of reasons. Th'lere has been a vast aiimotint, of work (lone oil dleveloping sequential
algorildinis, so it is hoped that somne of it carries over to p~arallel coipti)tat ion. Sonme genieral

techniques lin sequential coiIutation, such as divide anti conquer, involve partitioning
prolblenis into independent subproblenis. Soine of these algorilmmus have nattiral parallel

analogues. There are at few theoretical results that show that certain classes of comiputation

can be coinvertedl to p)araLllel algorithmns. For exaiple, it is known th~at programs that
colupute certalin poyoiil call be converted to fast parallel algorithnis pVimtJ. There

is also a p~ractical interest in convert inig sequiential algoritIiis t~o parallel algorit bins. Over

the years, mnany programns have been written for se(luiential coiipn ters. Many p~eop~le want
coimp~ilers dihal. will c(nimpile t he, code for parallel machines, to avoid lhaving to rewritv the
code. In c elt.ainl (lliali s, suich ats un umlleical Conlipu tation , this approach Is likely to he atI.r
least partially suiccessful. It is possible to idlentify at certain amiount of parallelismi in vector
coni I . tonis ali tonmatically.

Te ip proachi of dIirec tly c onvcertinfg seqItieiitial algoliius to parallel algori liis hias

its Iin~itations. Soic sequential algorithms process informnation in at way that seems to be
inherently sequientiatl. Each step inay directly dlepenid upon time previouts step, so it is not
possible to decomipose the comiputation into independent suhb-comiputatioiis. lit Chapter 2,
we investigate the relationship between sequential and p~arallel algorithniis. We introdulce
the notion of at f-comiplete algorithiii. This gives its at way to identify inihierently sequential

algorithin;. A l)-conplete algorithmn cannot be convertedI to at fast p~arallel algorithmn unless
P MWC. We give aiii ni111ber of exam lples of sinipIle algori thiis that are I '-contplete.

Showing that anl algorithimi is in ierently sequtential does not show thmat the lproblemt
that the algorithmin solves is necessarily (difficuilt. There are at nulnber of prolblilis where
the natural se(luemitial algorithmn is P-coniplete, lbut at different appIroach can be used to :
construct at fast, paral lel algorithiu. lin cases where ain algorithi n is P-conmmhlete, it is nlec-
essary to start fronti scratch to attemipt to find at fast, parallel algorithm., Tl'lis shows that
in sonmic cases coipletely differenit applroaches are needled for p~arallel algorith ins than are
usedl for sequiential algorithmis.

.0
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1.4. Techniques for Parallel Algorithms

The techniques that are used for parallel algorithms are quite limited. The technique
that is most commonly used is referred to as path doubling. The essential idea in path
doubling is that at each phase a processor doubles the amount of information that it has.
For example, in a summation algorithm, each step doubles the number of values for which
a processor has the sum. A second example is traversing a linked list. There is a processor
associated with each item in the list, and the processor has a pointer to another iten. Each
step of the algorithm doubles the distance that is covered by each pointer. Path doubling
also appears in more sophisticated guises. For example, it is used by Helinbold and Mayr
in their algorithn to compute an optimal two processor schedule [HM2].

One of the promising developments in parallel algorithms is that new techniques are
being discovered. One of the major new techniques is what we refer to as the iterated
improvement strategy. Instead of seeking to solve the problem in one shot, an iterated
improvement algorithm builds its solution in a number of phases. Often, each phase of
an iterated improvement algorithm reduces the number of candidates for the solution by
a constant fraction, so that there are only )(logn) phases. One of the first uses of this
approach was by Karp and Wigderson in their maximal independent set algorithmi [KW].
A maximal independent set in a graph is a maximal set of vertices with no edges between
them. The algorithm maintains a set I which is eventually a maximal independent set. At
each phase, the number of vertices that are not in I or adjacent to members of I is reduced %
significantly. A second important algorithn Ihat uses iterated improvement is the Karp-
Upfal-Wigderson mnatcing algorithm !KUWJ. This algorithm finds a perfect matching by
identifying subsets of the edges that are contained in a )erfect matching. Once edges are
put into the solution set, they are not remmoved. This method is in sharp contrast, to tihe
se(nentlial algorithms for matching which1 move edges into and oti. of the solution 11 S].

The use of randomness has been gaining popularity in parallel algorithnms. Quite often
it is possible to generate certain objects with random choices, but it seenis more difficult
t.o do it deterin istically. A typical situation is for randoni choices to be good with high
probability, but to guarantee that the choices are good requires basing each choice on
the other choices made. Randomness seenis to reduce decisions from being global to being
local. FProbabilistic techniques are often used in conjunction with tihe iterated improvement
strategy. In some cases, it is possible to get rid of the randonmness by showing that a small
sample space is sufficient, and then searching the sample space exhaustively IKW][LuI.

In Chapter 3 of this thesis, we look at parallel algorithms for some path problems
and u1se sone of these techniques. The path problems that we look at can be solved by
siniple sequetitial algorithins but are more dilicult to solve with fast parallel algorithms.
Much of our work on pathl problenis was motivated by the problem of depth first search.
A related problem is to compute a maximal path. A maximal path is i simple path that
cannot be extended. Our major results of the chapter are that a muaxinmal path can be
found by an R)XC algorithm, and that a depth first search tree can be constructed in time
O(n' / 2 "-') for an n vertex graph. We also give algorithmns for some other path problems.
The algorithnis employ a number of the new techniques. None of thent depend directly on
path doubling.
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1.5. Coping with P-Completeness %%

P-complete problems probably cannot be solved by fast parallel algorithms. However,
it is still important to see what can be done with these problems using parallelism. One
approach is to look for algorithms that are substantially faster than the known sequential
algorithms. Algorithms which run in sublinear time, say n 1/2 can be of practical impor-
tance. This is in contrast to the analogous situation for sequential algorithms, where super
polynomial algorithms are rarely practical. A second approach is to look for an approxi-
mate solution to the problem. In some cases, a solution that is close to the desired solution
can be found by a fast parallel algorithm.

There has been a substantial amount of work done on the approximation of NP-
complete l)roblems. For some problems, there are polynomial time algorithms which find
solutions that are close to the optimal solution. There are also results which give lower
bounds on the degree of approximation that is possible assuming that P -- N P. In Chapter
4 we study the parallel approximation of P-complete problems. Our results are similar to

the results on approximating NP-complete problems. One problem that we look at is
finding a subgraph of a graph that has all vertices with high degree. For a variant of
the problem we establish bounds on the degree of approximation that is possible. The
similarity between sequential and )arallel approximation is particularly strong for number
problemis. Some NP-complete number problems are tractable if the numbers involved
are small. This has motivated the distinction between strong and weak NP-completeness
[GJ21. We immke the same distinction for P-complete problems an( give an example of a
strongly P-complete problem.

1.6. Notation and Conventions

Many of the )ro)lems that we look at in this thesis are simple graph theory problems.
We tise is fairly standard notation. We generally denote a graph by G -: (V, E) where V
is the set of vcrtitces and E is the set of edges. Where we neglect to state it. explicitly,
the number of vertices is n. We make frequent use of the notation that identifies a set of
vertices with the induced subgraph on the vertices. For V' C V, the induced subgraph is
the graph G' = (V', (V' x V') n E).

In this thesis, we describe algorithms at a moderately high level. In most cases our
interest is to show that a problem can be solved in MC, as opposed to giving the best
possible parallel algorithm for the problem. We are not that worried about the exact
l)ower of the logarithm in an algorithm's running tines or the degree of the polynomial
for the number of processors used. In cases where we do claim explicit time and processor
bounds, they are with respect to a CREW ['-RAM implementation.

In our algorithms, we take advantage of many known parallel algorithms for graph

problemis. A very iinportant algorithm that we use a number of times is the Karp-Upfal-
Wigderson niatching algorithm. The algorithm is an R XC algorithm that finds a imaximumi
cardinality matching in a graph. rhe matching algorithmi can be use(d to solve a number
of other imnportant problems. For exaniple, it can be used to find a maximunm flow in a
unit capacity ntetwork. We also use quite a few subroutines to solve simple graph theory
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problems. We use algorithms for such problems as finding connected components [V],
finding articulation points [TV], and finding a shortest path between two vertices. We also
rely on parallel algorithms for maintaining data structures and manipulating graphs. We
do not go into the details of these operations. The parallel algorithms for these problems are

not very complicated, especially when we are only concerned with getting A/C algorithms,
as opposed to getting the best algorithms possible.

We describe our algorithms in a PASCAL-like language. Many of the statements are
English language descriptions. It would not be difficult to convert these to give a more de-
tailed implementation of the algorithms. Some of our algorithms appear rather sequential,
their parallelism arises from the parallel iniplementation of the individual statements. We
do use a few explicit parallel control structures in our algorithm descriptions. We use a
statement which has the form: for each x do in parallel. This has the natural meaning
of running independent copies of the routine for each z and then combining the results
when the routines are all done.

10.
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Chapter 2 P-Complete Algorithms

2.1. Introduction

One of the interesting and challenging aspects of parallel computation is that different
techniques need to be used for parallel algorithms from those that are used for sequential
algorithms. In sequential algorithms, processing is done one step at a time. This allows
solutions to be constructed in many phases, with choices depending upon all of the earlier
choices that were made. However, to get fast parallel algorithms, many choices need to
be made simultaneously. The computations need to be localized, with only a small depen-
dence between the various components of the computation. In this chapter, some simple
sequential algorithms are examined. Strong evidence is presented that the techniques used

,* in these algorithms are often inherently sequential, so there is little hope that they can be
" sped up substantially with parallelism.

Sonic sequential algorithms have fairly direct parallel counterparts. The parallel algo-
rithm can be thought of as a parallel implementation of the sequential algorithm. A trivial
example is matrix multiplication. The straightforward seqtiential algorithm computes the
entries of the product one at a time, while the parallel algorithm computes the entries
simultaneously. However, other sequential algorithms take advantage of being able to base
decisions on accumulated information. For example, the sequential algorithms for miatch-
ing start with an initial solution and improve the solution through a nuinber of phases
of augmentation. The known parallel algorithms [KUWI for matching take a completely
different approach.

In this chapter we formalize what it neans for an algorithm to be inlerently sequen-
tial by relating computations to certain P-complete problems. The term "lP-complcte
algorithmi" is introduced to describe these algorithms. This provides strong evidence that
soine algorithms are inherently sequential. When we show that a certain approach to a -

problem probably cannot yield a fast parallel solution, this does not imply that the j)rob-
lem is difficult. There are a number of examples of problems where the natural sequential
algorithm is P-complete, but a different approach can be used to construct a fast parallel
algorithm.

The sequential algorithms that we examine are greedy algorithms. The greedy para-
digm is a very important general technique used in many sequential algorithms. Examples
of greedy algorithms include Kruskal's minimum spanning tree algorithm [K and the well
known algorithm for depth irst search I'!']. A greedy algorithm is one which milds its
solution one step at a time. Itenus are added to the partial solution by picking the "best"
choice by some generally simple criterion. Once an item is added to the solution, it will not
be discarded, thus there is no backtracking. Greedy algorithms often seent very sequential
in nature, since the choice of which item to add to the solution set frequently depends
on many of the previous choices. In this chapter we show that the greedy algorithls for
several simple problems are P-complete. We show that the greedy algorithms for finding
a maximal path, for finding a set of disjoint paths, and for approximating a maximmim cut
are all P-complete.
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2.2. Definition of P-completeness for Algorithms

The purpose of extending the notion of P-completeness to algorithms is to be able to
capture the idea that an algorithm is (probably) inherently sequential. The definition of
P-completeness for algorithms that we give must in some way capture what it means to
implement a sequential algorithm as a parallel algorithm. In other words, the definition

must establish some kind of correspondence between sequential and parallel algorithms.
To justify the term "P-completeness," our definition should give as much evidence for
the algorithm being iherently sequential as there is that a P-complete problem cannot
be solved by a fast parallel algorithm. To do this, our definition should imply that if a
P-complete algorithm could be implemented as an A/C algorithm then P = A/C. There are
ia number of different ways that P-completeness can be defined for algorithms. The basic
idea in the definitions is that the problem of performing the same computation as is done
by the sequential algorithm is a P-complete problem.

One way to define an algorithm to be P-complete is in terms of the full computation of
a Turing machine. The computation of a polynomial time Ttiring machine on a particular
input can be summarized by a string of polynomial length. For a Turing nmachine M,
this string can be viewed as a function fM(x) of the input z. A possible definition of
P-completeness of an algorithm A with Turing machine Af is: A is P-complete if the
problem of computing fM(x) is P-complete. The drawback to this approach is that it is
heavily dependent on the actual Turing machine corresponding to an algorithm. It is rarely
desirable to have to describe algorithnis in terms of Turing machine implementations. The
advantage of this approach is that it fully captures the coimpuitation of the algorithm.

The definition of a P-complete algorithn that we use is based on functions, that solve
search problemls. A search problem I1 consists of a set of instances D1 and set of solutions

S[[I for each I C D [(;J3 pp. II01. rhe Iroblem can be viewed ats a relation R -

{(z,y) I x c Dl1,y c S[x]}. An algorithm for a search problem is a function f such that
(x, f(x)) c I. A simple example of a search 1,rolblen is the spanning tree p~rollem. The
solutions for it graph G forim the set of all spanning trees of G. An algorithmi that solves
the spanning tree problenm is one that finds some spanning tree. For a search problem,

there are niany possible algorithms that solve the problem. Our definition of a P-complete
algorithm is:

" Definition 2.1. An algorithm A for a search problem is P-complete if the problem of
computing time solution found by A is P-complete.

A shortcomninig of our definition of a P-conilplete algorithn is that it, does not imme-
diately relate to the internal conipttation of the algorithm. For some algorithins it is the

method used to get the answer that appears sequential in nature. Tie way to handle this
with our current definition is to redefine the result of the algorithm so that it includes a
trace of the computation. This means that we include with the result a list of certain inter-

nal states of the computationi. For example, if an algorithm computes the partial solutions
Sl,... ,S, on its way to the solution S, then we could de fine the result as S1,... ,S,,S.

This allows us to iande iiost cases of interest with our definition of P-completeness for
algorithmins without having to deal with the details of Turing machine implemientation.
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In order to prove that an algorithm is P-complete, it is necessary to have a fairly precise
statement of the algorithm. When describing an algorithm, it is common practice to leave
certain steps unspecified with statements like "pick an unmarked vertex." This is done
when several choices are satisfactory and there is no need to encumber the description with
superfluous detail. When implementing the algorithm, some arbitrary choices need to be
made. Often a reasonable choice to make is to choose the lowest numbered element. When
this choice is imade, frequently the resulting solution is the lexicographically minimum
solution. The natural lexicographic order on strings is si ..s <tt tl ... tk if S ... Si

t,-. tj and < k or sI ... s = tL "'tj and s,+1 < tt+t. We shall use the word lexmin in
place of the cumbersome phrase "lexicographically minimum." For graph problems with
edges represented by adjacency lists, another reasonable approach for unspecified choices of
edges is to take the first available edge from a list. The result of this approach is generally
equivalent to choosing the lowest numbered adjacent vertex when the edges are ordered in
the list by vertex numbers.

An example of a P-conmplete algorithm is the greedy algorithm for finding a maximal
independent set. For a graph G = (V, E) an independent set I is a subset of the vertices
such that there are no edges between vertices in 1. A maximal' independent set is an
independent set that is not properly contained in any other independent set. "'lie sequential
algorithm constructs a maximal independent set by considering the items one at a time. -M

If an item is not adjacent to the independent set when it is considered, then it is added to
the independent set. The algorithm is:

MaxinallndependentSet(G)
begin

I 4-- 0;
for i4- 1 to IVI do

if v, V N(1) then
1 4- 1 U {v,};

end.

One approach to designing a fast parallel algorithin for finding a niaxinal ilependent set
is to attenipt to implement the sequential algorithm as a parallel algorithm. The algorithm.
would have to decide whether or not to include an element v, in I without building I step
by step. However, this approach is not likely to be successful. The solution that is found
by this algorithm is the lexmnin solution. The problem of computing the lexmin maximal
independent set is P-complete, so the algorithm is a P-complete algorithm. This result
is due to Cook, who showed that the complementary problem of computing the lexmin
maximal clique is P-complete 1C21. Althongh this sequential algorithin apiparently cannot
be used to create a fast parallel algorithii, a different approach can be used to construct

fst parallel algorithm. Wigderson and Karp 1KW] developed a probabilistic parallel
algorithm for constructing a maximal independent set. Their algorithm can be converted
into a determiinistic algorithm, so the problem can be solved in MC. A simpler nmaximal
independent set algorithm has been found by Luby [Lit].

In this thesis, we use utzimal to denote something that cannot be extended, and we use mazimum

to indicate maximum cardinality.
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2.3. Finding a Maximal Path

The first algorithm that we show to be P-comiplete is a simple algorithm for finding
a path in a graph. The algorithm builds a path one vertex at a time by going fromi the
current endpoint to its lowest numbered neighbor that is not already on the path. The
algorithm runs until a vertex is encountered that has all of its neighbors on the path so
that the path can not be extended. A path that cannot be extended is a maximl( path.
The greedy algorithm for finding a maximal path starting at a given vertex r is:

GreedyMaxim alPath(G, r)
begin

P +- r; V 4- r

while v has an unvisited neighbor do
begin

wy+ lowest numbered unvisited neighbor of v;

end
end.

Tfhe greedy algorithm conmputes the Ieximiin muaxinmal path. We show that comiputing
the Iexnin maximal path is at P-coniplete problem, so that this algorithmn is P'-complete.
However, this does not mean that a maximal path ca nnot be found by a fivt parallel

* algorithin. The next chapter gives an £Z.NC algorithm for finding at maximial piath. The
greedy algorithmn for Finding a maximal path is closely related to the algorithnu for finling
at dlepth first search tree of a graph. The greedy mtaximial path algorithlifinds (ihe initial
branch of the lcxnmin depth first search tree, so our results imply that t~he greedy algori tlhin
for depth first search is lI-com plete. The origimil proor that, compu)It ing thele: iii in (lepth
first search tree is I'-comiplcte is due to lteif Iftcl.

2.3.1. Directed Lexmin Maximal Path

We show that the problem of computing the maximal path found by the greedly algo-
rithmn is P-complete. We first show the result for directed graphs and then for undlirected

* planar grap)hs. The proof for directed graphs is simpler and conveys the intuition of why
* the problem is difficult better than the proof for planar graphs. The second result is
* stronger since it applies to a very restrictive class of graphs. Finding the lexinin maxinmal

p~ath in an undlirecte(I graph1 is a special case of the plmt for directed graphs, since an
undirected edge can be viewed as a pair of directed edges.

Theorem 2.1. Tme probleim of computing the lexinin maximal path is P-cwniplete for
directed graphs.

Proor: The proof is a reduction ,from the mIonotone circuit vale problem. Let
.. be an instance of the monotone circuit value problem. TLhe circuit fl is trans-

formied iii log-space to a graph with distinguishied vertices T and v siimt that v will be on
the lexni path froni r if and only if the circuit evaluates to true.

14
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For each gate A3k there is a collection of vertices. A gate is simulated by the way that
the lexmin path passes through the vertices corresponding to that gate. The gates are
evaluated in order, with the path first passing through the vertices for #I, then P2, and
so on. There are vertices k,,, and kot in the collection of vertices for fk. The segment of
the lexnidn path between the vertices k,,, and k,,ut visits certain vertices to test the values
of the inputs to 13k and then visits other vertices to indicate the value of the output of the
gate.

A key component of the simulation is a switch which is used to indicate the value of a
wire. For each gate there is one switch for each output. The vertices of these switches are
traversed during the simulation of the gate to indicate a true value, and they are bypassed
to indicate a false value. If a switch for k is not visited when simulating fk, it might be
traversed when simulating a gate #j which receives an input from fk.-

The gadgets for the gates are shown in the figures below. In the figures, the switches
are the groups of four vertices drawn in a square. The gadget for gate /3k is connected to
the gadget for /k1 by an edge from k..t to (k + 1)i,,. If a gate flk receives an input from
gate fl,, then the gadget for fAk is connected to the output switch of 03j. The AND and OR
gates are illustrated as 2-output gates &, that receive inputs from 13, and 3j. The vertices
of the graph that is constructed are labelled so that the labels of the vertices associated

." with f, are less than those associated with A3k for i < k. In addition, within gate /k, the
labels are as indicated in the figures, where k < k, < k,+,.

-- kin kout kin k,. t

0-INPUT I-INPUT

The circuit is simulated by constructing the lexmin path starting at the vertex 1,".
From a vertex v the path goes to the lowest numbered neighbor of v that is not already
on the path. For a 0-INPUT, the path goes directly ki to k,,ut, and for a I-INPUT the
path traverses the switch on its route fron ki, to kfou t.For an AND gate if either of the
input switches has not been traversed wlhen the path gets to ki,, (so the gate is receiving
a false input), then the path goes through an in)ut switch to k,,,t, bypassing the output
switches. For an OR gate, if either of the switches has been visited then the path will go
through the output switches. In the illustration of an OR gate, the highlighted path shows
what happens when the gate receives a false input from /3, and a true input from /3. If

the lexmin path visits a vertex in the output switch of the final gate fl,', then the circuit
evaluates to true, and if the path does not visit the output switch, the circuit evaluates to
false. I
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is the right most gate on a level, in which case #k+1 is the leftmost gate on the next level. ',

The wires between gates run only between consecutive levels and the wires do not cross.

Theorem 2.2. The problem of computing the lexmnin maximal path in undirected planar
graphs with maximum degree three is P-complete.

Proof: We prove this theoren by giving a log-space transformation from the circuit value
problem for layered planar OR-NOT circuits. The planar circuit value problem remains
P-complete with this restriction. The reduction of an arbitrary circuit to a planar circuit
[G1 can be nodified so that this type of planar circuit is genterated.

The construction is the same as used in Theorem 2.1 except that we use the gadgets
below. Tile gadgets for the gates can be put in levels and the connections to the switches
can be done without edge crossings. The only violation of planarity is the edge between
ko,,t and (k + 1),,, when 8,k and 8k .I are on separate levels. This problem can be solved
by laying the graph out on a cylinder instead of the plane. The cylinder can then be
projected onto the plane to achieve a planar layout. The vertex labels shown in the figures
are just 0, 1, 2, 3, and 4. The vertex labels can be made unique by replacing each label k
(k c {0,..., 4}), by a label in {kn,..., (k + 1)n}.

The circuit is again simulated by computing the lexumin path from the vertex li,. The
path will visit the output switch of the final gadget if and only if the output of the circuit
is true. I

ki. kout ki. kout

0 0 01 10

0 0 0 0

1 _11 _1

0-INPUT [-INPUT

0 0 0 0..'

ki. k(,

0 4 12 3 .2 / 4 0"

0 4 10 0 0 ""

11 11

OR gate
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0 0 3 2 0
3

0 0
1 1 '

NOT gate

Since the lexnin maximal path is the initial branch of the lexmin depth first search
tree, we have the following corollary. This is an improvement of the result of Reif [Re].

Corollary 2.1. Computing the lexmin depth first search tree is P-complete for planar
graphs.

2.4. Finding a Maximal Set of Disjoint Paths

A second path problem that can be solved by a siniple greedy algorithmn is to find a
maximal set of disjoint paths. The problem is:

Given a graph G = (V, E) and a subset U of V, find a maximal set of vertex
disjoint paths joining the vertices of U.

The set of paths is required to be maximal in the sense that no imore paths joining vertices
of U can be added to it. A greedy algorithm solves this problem by finding paths one at a

* time until no more paths can be found. In this section we examine the problemi when it is
restricted to a layered directed acyclic graph (dag). A layered graph has all of its vertices
in levels with edges only between consecutive levels. The motivation for looking at this
restricted case is that it occurs as a subroutine in a numiber of network flow an( matching
algorithns ([lK].

We show that the greedy algorithm for finding a naxinial set of vertex disjoint )aths
in a layered dag is P-complete. The greedy algorithm repeatedly finds paths from the first
level to the last level and removes them. This process is repeated until the first level is
separated from the last level. When a path is removed, sone vertices might be separated
fron the last level, these vertices are also removed. When the algorithm constructs a
path, it, finds the lexmin path between the first and last level in the current graph. The
complexity of the problem does not arise from finding lexnmin paths, since they can be
found easily in a dag. The complexity arises fron the dependence of a path on the previous
choices of paths.

18
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Theorem 2.3. The greedy algorithm for computing a naximal set of vertex disjoint paths
in a layered dag is P-complete.

Proof: The proof is a reduction from the circuit value problem with several minor restric-
tions. First, the circuit is restricted to be made up of only inputs, NOT gates, and AND
gates. The fanout of all gates is assumed to be exactly two, although one of the outputs
of a gate need not be connected to anything. The gates are numbered topologically so
that a gate gets its inputs from lower nuiubered gates. The outputs of gate fli are denoted
il and i2 , with il going to the higher niumbered gate receiving an input from /fli and i2
going to the lower numbered gate. If only one gate gets an input from fl,, then that gate
receives i2. It is finally assumed that the AND gates get their inputs from distinct gates,
so fk AND(ili 2 ) is not allowed. The circuit value problem clearly remains P-complete
with these restrictions.

Let 8 13,..., 3. be a circuit, satisfying the above conditions. We construct a layered
dag G such that the inaxinial set of disjoint paths found by the greedy algorithm with input
G corresponds to the evaluation of the circuit P3. The basic structure of G is:

1 2 3 4 n

I I I -p
G, G2 G3 Lx4 ... Gn"{

Ok I 7'I:?

1' 2' 3' 4' ni

Gk is the gadget which is associate(d with the gate flk. The circuit is simulated by comput-
ing a sequence of paths Wi,..., I,,. The path P1k is the lexinin path in the graph G after
the paths Pl,..., Pk- I have been removed. The gate fk is siniulated by the path Pk. The
path Pk goes from k to k' an( lies entirely in Gk except when it tests the inputs to flk.
There are two distinguished vcrtkes k, and k2 in Gk that are visited by PA, if fk is true
andi are not visited if k is false.

The gadgets for the inputs and the gates are illustrated in the figures below. The
graph has 3n + 2 levels. The output vertices for Gk are numlbered ki and k.2 . The vertices
k1 , k2 and k3 are on levels 3k - 1, jk, and 3k + 1 respectively. In the figures, all edges are
directed downwards. For a 1-INPUT and a 0-INPUT, the path Pk goes directly from k to
k'. The vertices k, and k2 are visited for a I-INPUT and are not visited for a 0-INPUT.

In the figure for the NOT gate, A3k = NOT(i,), p C {I, 2}, tle vertex I is numbered
higher than the vertex 1p. If the vertex i4 has not been visited when Pk is constructed,
the path Pk goes through i, to k, and k2, otherwise the path goes through 1 and bypasses
k, and k2. Since i, not being visited corresponds to/3k receiving a false value, the gadget
simulates a NOT gate. In the AND gate f, = AND(i,,jq), p,q e {1,2} the path Pk goes
through kn and k2 if both i, and Jq have been visited by earlier paths. If i, or Jq has not
been visited when 'k is constructed, then the path does not go through the vertices k,
and k2 . Note that if both i1, and j,, have not been visited, the path Pk goes through both

i: and iq.
4o
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In the NOT gate shown below it is essential that the vertex i1 ,- 1 is visited by some
path before the path Pk is constructed. If this were not the case, then the path P, would
go out through i,,+1 into the vertices of a different gadget, not returning to kt and k 2 .

This also applies to the vertices i2,, and Jf, I in the ANT) gate. For any gate, the vertex
k3 is otm the path Pk, so there is no problem for p = 2. If p 7 1, then the gate P3k is the
higher nmi)bered gate to receive an input from /3i. Suppose fl also gets an input, from fli.
The path P contains the vertex i. if i 2 is not on P,. I lence the vertex it ,, is already on
a path when PA is constructed. This completes the proof that the circuit is successfully
simulated by the set of disjoint. paths found if) G by the greedy algorithm. I '" 1

2.5. Neighborhood Heuristics for NP-Complete Problems

Greedy algorithms are often used to approximate NP-complete problems. The basic
approach is to take some starting solution and attempt to improve it by local changes. The
improvements are repeated until a local maximum is reached. Although these heuristics
are dilficult to analyze, they have been found effective in practice.

The greedy algorithms for maity neighborhood search schemes appear to be inherently

sequential. It seems to be dillicult to perform more than a few steps of te search at a
time. As an example of this we show that ain approximation algorithm for the maxcut
problem is P-complete. The maxcut problem is:

Given a graph G = (V, E), find a partition {V, V2 } of V such that the number
of edges between V1 and V 2 is maximized.

The heuristic that is used is to move vertices between the two sets as long as moves increase
the numler of edges between the two sets. First some initial partitiom is chosen. Then a
vertex is found that has more neighbors in its own set than iii the other and it. is moved to
the other set. This step is repeated until each vertex has more neighbors in the opposite
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set thtan in its own set. Since the nhimber of edges between V, and V2 is increased each
move, there are at most J J phases.

An alternative way to view this scheme is as a coloring p~roblem. The goal is to color
the vertices with two colors such that each vertex has more neighbors of the opposite
color than of its own color. Such a coloring is said to be stable. A stable coloring can be
computed by switching the colors of vertices one at a time until the coloring is stable. A
valid swap occurs when a vertex with more neighbors of its own color than of the opposite
has its color changed. We show that given a graph with an initial assignment. of colors,
it is I'-coml)lete to comipute a sequence of valid swaps that reaches stability. This shows
that the greedy algorithm for approximating maxcut is P-complete. For this problem, we
require that the output include the intermediate computations that are made. We do this V.

so that all of the color swaps are valid. Our result does not imply that it is P-complete
to compute a stable coloring. It is an open problemn whether it is possible to compute a
stable coloring with a fast parallel algorithm. An JIC algorithm is known for computing a
stable coloring of a graph with maxinmni degree three JKSSJ.

Theorem 2.4. Given a graph G (V, E) and an initial assignment of colors to tile
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vertices, it is P-complete to compute a sequence of valid swaps that rcaches a stable ,
coloring.

Proof: The proof is a reduction from the monotone circuit value problem. Let [3 =
,.f, be a monotone circuit. A graph G is constructed such that a sequence of

valid swaps that reaches stability corresponds to the evaluation of the circuit. There is
a subgraph for each gate with an initial assignment of the colors R/B. Tile OR gate
is shown below. The gates are connected together in a manner that corresponds to the
connections of the circuit. The subgraph for 3k has three distinguished vertices, the vertex
k is associated with the gate's inputs and the vertices k, and k2 are associated with the
gate's outputs. If flk gives outputs to [I and [,.m (I < m), then there are edges (kil)
and (k 2 ,m). In the illustration of the OR gate, the vertices labelled with B have color B
and are connected to two vertices with color R (not shown in the figure). These vertices
will never have more B neighbors than R neighbors, so they are colored B throughout the
simulation. Similarly the vertices labelled ft have color R and are connected to two vertices
with color B. The AND gate has the same structure as the OR gate except that the two
vertices labelled z are not present. A 0-INPUT fk is a vertex k with color R connected to
two vertices with color B and a 1-INPUT 3k is a vertex k with color 3 connected to two
vertices of color R. If the input [3k goes to the gate [1, then there is an edge (k,1).

The circuit is evaluated by finding a sequence of valid swaps that reaches a stable col-
oring. The graph G has the property that the coloring achieved by any maximlal sequence
of valid swaps is unique. The graph also has the property that any vertex can have its color
changed at most one time. The initial coloring of the gate [k is stable, except possibly
for the vertex k. If the vertex k is recolored R then other vertices become unstable and,
eventually the vertices k, and k2 are recolored B. If the vertex k is recolored I, then the
gate 13A. evaluates to true. When the vertex k is colored R, the swaps )ropagate so that
the vertices k, and k2 have their colors changed to B. For the Olt gate i3k, if one of the
vertices corresponding to its inputs is recolored, then the vertex k is recolored. Similarly,
for the AND gate [3A, if both of its inputs are recolored, then the vertex k is recolored.

* A mawximal sequence of swaps sinmulates the evaluation of the gates in roughly topological :"
order. A gate is not set to true (i.e. the colors switched in the associated subgraph), until
enough of its inputs are known to be true to make the gate true. The simulation proceeds
until the subgraplis that correspond to all gates that evaluate to true have had their colors
switched. I

2.6. Additional P-Complete Algorithms

Many other sequential algorithms can be shown to be P-complete. Here are a few
additional P-completc algorithms. All of our P-completeness proofs for these algorithms
are reductions fromi variants of the circuit value problem. The P-completeness proofs for
tihe high degree subgraph )roblem andi first fit bin packing are given in Chapter 4. The
other proofs are left to the interested reader.
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High Degree Subgraph Problem.
PROBLEM: Given a graph G = (V, E) and ,an integer k, construct the maximum induced
subgraph that has all vertices of degree at least k.
SEQUENTIAL ALGORITIIM: The sequential algorithm for this problem discards vertices of
degree less than k one at a time until all remaining vertices have degree at least k.
Comment: The problem of determining if a graph has a noicmipty induced subgraph with
minimum degree k is also P-complete. Various methods of finding approximate solutions ,
to the high degree subgraph problem are discussed in Chapter 4. -

First Fit Bin Packing
PROBLEM: Given a finite set U of items with sizes s(u) E Z + for each u C U and a bin
capacity B, construct a first fit packing of the items into the bins.
SEQUENTIAL ALGORITHM: The sequential algorithm considers the items in the order
u1 ,...,u,f and places each item in the first bin with enough room left for the item.
Comment: This problem remains P-complete if the items are in decreasing order, but can
be solved in AC if the items are in increasing order. The problem is discussed further in .
Chapter 4.

Alternating Breadth-first Search
PROBILEM: Given a graph G =: (V, E) with the edges partitioned into two sets M and
U, and a distinguished vertex r E V construct an alternating breadth first search from r.
An alternating breadth first search is a partition of the vertices into levels, with edges in
U going from even levels to odd levels, and edges from M going from odd levels to even
levels. A vertex v is on level i for i even (i odd) if it is not on any level less titan i and
there is a vertex w on level i - 1 with (v,w) C M ((v,w) E U). The vertex r is on level 0.
SEQUENTIAL ALGORITHM: The sequential algorithm assigns the vertices to levels, one
level at a time.
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Travelling Salesman 2-Opting
PROBLEM: Given a graph G =(V, E) with edge weights, w(e) C Z+ for -!ach e E E and '

an initial tour To, find a sequence of tours TO) ... , Ttr such that T, is the sesult of at 2-opt
[KLI of Tj , jthe cost ofT7,. is less than the cost of T, - I and either T,,, is a locally optimal
tour or m > JVt. A 2-opt refers to a neighborhood transformation done on tours of the
graph.
SEQUE NTIAL ALGORITHM: Transformations are applied one at a time until a local opti-
mium is reached.
Comment: It is necessary to put at bound on the number transformations, since examples
aire known where anl exponential number of transformations may be ilade before a local

* optimum is reached [Luel.

2.7. Discussion

In this chapter, we have shown that a numiber greedy algorithmns seem to be inherently
sequential. However, there is one important greedy algorithm which has a parallel imple-
mentation. naiamly Kruskal 's inin ium spanning tree algorithin. The algorithm constructs
at minimum spanning tree by considering the edges in order of their weights. It maintains
as- its solution set at collection of trees. Any edge which joins separate trees is added to the
solution. This algorithin can be convertedl to a parallel algorithm by considering each edge
independently. Ani edlge is iin thle niion mmiii spanninig tree if anid oily if it, jois dlistinct

4 ~conn~ectedl comipommelits of tile edges diat. comte lmfel~ it. If thle edges are ordleredl by their
edlge nuimbers, thmen this algorithmn findls thme lexniin spanning tree.

Ilme reasoni that the greedy algorith ii for tile imimn unin span ning tree p~roblem can
lbe impleimented as a fast p~arallel algorihium is that it, is easy to kniow if ain edlge is in the
solution set without knowing exactly what thle solution set is when time edge is considered.
Trie minimum spanning tree p~roblem is at special case of the maxiinuni indcpendent set

p~roblem for weighted matroidls. As long ais the matroid has at rank function which can
be computedl by a fast parallel algorithm, then the associated greedy algorithm can be
parallelized.

There are a number of interesting open p)robleims concerning greedy algorithms. One
of tile most inmportat. is the status of the greedly algorithm i for coipti n g at maximal
matching. This algorithm computes the lexinin miaximal matching. Although this prob-

4 ICIII bears at close resemblance to the lexmnin maximal independent set problem, it is not
known to be P-conmJphtc. A J)-comipleteness proof of lexmnin umaxinmal umatching would be
significant since it would impjly that weighted miatching is I)-complete.

In this chapter we introdutce(] the notion of at L-completc algorithin. This notion pro-
vides a nicams to identify techniques that p)rob~ably will not, work for a p~articuilar p~roblem,
andl to direct tile search for algorithms iin more promisinig dlirections. te specific results
of this chapter show that for quite a few problems, a greedy approach is not likely to
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yield a fast parallel algorithm. However, since many of these problems can be solved by
parallel algorithms using other methods, this shows that different approaches are needed
for parallel computation from those that are used for sequential computation.

JP
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Chapter 3 Path Problems

3.1. Introduction

In this chapter we present parallel algorithms for a number of simple combinatorial
problems. The problems that are examined all deal with finding certain paths in graphs.
The most important results of this chapter are that it is possible to find a maximal path
with an ZA'C algorithm and that a depth first search tree can be constructed in O(n'/2 -i)

time. Some of the results in this chapter are complementary to the results of the previous
chapter. The greedy algorithms for several prohlems studied in this chapter are P-complete,
but these problems can be solved by fast parallel algorithnms when different approaches are
taken.

The first algorithm that we give is a simple probabilistic algorithm for finding a long
path in a dense graph. Given a graph with all vertices of degree at least m, a path of
length Mn -- o(m) is constructed with an R.AIC algorithm. The second problem we look at
is finding a maximal set of disjoint paths. The problem is given a graph G -: (V, E) and a
subset U of the vertices, find a maximal set of vertex disjoint paths with their endpoints
in the set U. We show that this problem can be solved inl A/C for graphs with bounded
degree. We then show that a maximum set of disjoint paths can be found in RMC using
the Karp-Upfal-Wigderson matching algorithm. The major result of this chapter is that
the maximal path problem cam be solved in RA/C. The mlaxinmal path problem is:

Given a graph G = (V, E) and a vertex r, find a simple path starting from r that
cannot, be extended without encountering a vertex that is already oil the path.

We also show that the restricted case of the maximal path problem for bounded degree
graphs can be solved in A/C. Our final result is that a depth first search tree of an n vertex
graph can be constructed in parallel time 0(n1/ 2+).

There are a number of reasons to look for parallel algorithms for problems such as
these. A major reason is to gain ,an understanding of the types of problems that are
in N/C and R.VC. Although these problems are fairly simple in nature, it is by no means
obvious that they can be solved by fast parallel algorithms. These problems are not closely
related to other problems known to be in AC or NA/C, so the positive results increase the
variety of problems that can be solved by fast parallel algorithms. A second reason to look
at particular problems is to identify techniqties to use in parallel algorithms. There are
relatively few general techniques used in parallel algorithms, so it, is hoped that by looking
at new problems, additional techniques can be discovered and added to the repertoire.

Some of the problems discussed in this chapter are important problems in their own
right. In particular, depth first search is one of the major open problemls in parallel
computation. The algorithm in this chapter is the first sublinear algorithm for depth first
search. Much of the work in this chapter was mot.ivated by the depth first search problem.
The initial reason for studying the maximal path problem is its close relationship to depth
first search.
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3.2. Finding a Long Path in a Graph

The first problem that we look at is the problem of finding a long path in a dense
graph. Let G = (V, E) be an n-vertex graph with all vertices of degree at least m. The
graph clearly has a path of length at least m. This problem can be solved sequentially
by the greedy algorithm discussed in the previous chapter, since any maximal path in G
has length at least m. However, this problem is a little trickier to solve with a parallel
algorithm. One plausible approach is to generate a random walk in the graph and take
as the path the segment of the walk up until the walk's first intersection with itself. This
does not work since if the graph is a complete graph, then the expected length of the path
constructed by this method is just O(V/-n).

The algorithm that we give for this problem is a probabilistic algorithm. The basic
idea is to construct a subgraph in which a long path can be found easily. The subgraph is
constructed by making random choices of the edges. The randomization is done in a way
where the choices of edges are not fully independent, so that the resulting graph has a long
path with high probability. The algorithm finds a path of length at least --n-- where c is
a small constant. The algorithm runs in expected time 0(logn) using 0(n 2) processors.
The algorithm can be run several times to construct a path of length m - o(m) in )ZXC.
As long as the path has length less than (1 - g,,)m, the graph formed by deleting the
path has all vertices of degree at least so a path can be found of length Thus

at most c log n paths need to be found to construct a path of length m - o(m).
The first step in the algorithm is to randomly label the vertices of the graph. Each

vertex, independently and uniformly picks a label from the set {0,... ,d - 1} where d -

[.o,, J . For a random labelling, it is very likely that each vertex has at least one neighbor
with label i for every i c {0, ... ,d- 1}. We denote the set of labels of neighbors of v by
L(v). A labelling with L(v,) :- 10,... ,d- 1} .or all v, C V is referred to as a good labelling.

Lemma 3.1. For a random labelling, L(v,) = {0,... ,d- 1} for all vi C V with probability
at lcmt 1 -- -. .

Proof: Let c - 3 In 2. The leimna is proved by bounding the probability that there is
some vertex which is not adjacent to vertices with all of the labels in {0,..., d - 1}.

P {3viI L(vi) {- {O,...,d- 1}} < P{L(vi) $ {0,...,d- 1}}
v1 EV

- P{J V L(vi)}

v.EV O< ,d- 1

vEV O<3<d-1

< n (0 dc log nd)

< n2e-clog -1

I
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The labelling step is repeated until a good labelling is found. Onice a good labelling
is found, each vcrtex picks onc of its neighbors a(v) with a label one greater than its
label, thus if vertex v has label k, it picks one of its neighbors with label (k + 1) mod d.
An auxiliary graph is constructed with vertices v and an edge from each vertex v to the
associated vertex a(v). A typical example of the auxiliary graph is illustrated below. Since
this graph has JV( edges, it must have a cycle. On the cycle, the labels increase by exactly
one going from a vertex to its neighbor, so the graph has a cycle of length at least d. This
cycle can be found by path dloub~ling in O(logn) time.

3
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3.3.Fining Maima Setof isjont ath

A3.3 he pFhIrIIei stindin a tMaximial set of disjoint paths. h ~olI s

C ivei at grali G -- (V, I,") andI a subset, U of the vertices, find at iaxitinal set
P) P{I1, . -'I,)P of vertex disjoinlt paths that join vertices of U.

Thiis nicans that no more paths can be adlded to P that have their endpoints in U. We
* reqiiire that tile paths are non-trivial (i.e., they contain at least two vertices), and that

vertices of U only appear in the paths of P as endpoints.

The maximial set of disjoint paths prob~lemn is a generalization of maximal inatching.
If (f- V, then thte problemn is to find1 it maximial matching iii the graph. The maximal
set of (Ii.;joiil. pathIls I)r-Olleiii is anl iit jorIlatit sit brotitiiie for at nutumber of se(jiiential and
paratllel algoritlitins. '[hle directed variant of tire problein is at key step iii the I Iopcroft-

Karp bipartite inatchiing algorithmn (II KI. We usc an aligorithm for finding at maximal set of
disjoint. pthls in our (leJthi first search algorithmn. We present two ;flgorithniis for finding
disjoint paths. Thle first algorithmn is an )J'C algorithm for graphs witli bounded degree.
11'w( seconml algori th mu is actually for a more Ii fic Ilt proleiii for finti ng a maximumn set
of (Iisjoitit pathis insteadl of just fintding at imaxitmal set of (Iisjoitt patlis. The algorithml
reduices tite prolemin to iatchi ig, so it call be solved ill R )1 C uising the Karp- Upfal-
Wigderson niatcliiiig algorithmn. It is straightforward to generalize our second algorithmn
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I
to directed graphs. However, the bounded degree algorithm al)plies only to undirected
graphs. Tm

When the maximum degree of the graph is bounded by d, a maximal set of disjoint
paths can be found in O(dlog3 n) time. Thus if d is O(logk n), the problem can be solved
in VC. The algorithm uses the iterated improvement strategy mentioned in Chapter 1. .

Each pha-c of the algorithm finds a number of disjoint paths and deletes thenm from the
graph. The number of vertices in U is reduced by a factor of about 1 - eachpd ac phase.

A phase begins by finding a spanning tree of the graph. Then a maximal set of disjoint
paths is found in the spanning tree. The paths are then deleted and another phase is run.
If the graph becomes disconnected, the separate components are considered independently.

A maximal set of disjoint paths in the tree is constructed by following paths from the
vertices of U up towards the root. Whenever two or more paths intersect, two of the paths
axe joined. For example, in the figure below, paths would be found between the pairs of
vertices (ui, u 3 ), (u4 ,u5 ), and (u7 , u 8 ). The vertices u2 , and u6 would be left for the next
phase.

U 7

,J.

/( 8U2 U 3

U 1  U6  U8

It is not dillicult to find the )aths quickly in parallel. One method is to assign values
to the edges of the tree: I indicates it is a path edge, an( 0 indicates it is not a path edge.
If a vertex is not in 1U, then the edge coming out of it, has value I if exactly one of the
edges coming into it has value I and the value is 0 otherwise. For a vertex in IT, the value
of its outgoing edge is 1 if all of the edges coming into it have value 0 and the value is 0
otherwise. The values of all the edges can be computed by treating the tree as a type of
circuit and using the standard technique for evaluating circuits with fanout one.

Whenever some paths are joined at a vertex, some other )aths might be cut off.
The tree can be )artitioned into connected cotml)onents that consist of the edges that are
assigned the value 1. There is at most one component that contains exactly one vertex of
U. For the other components, the worst case is if a vertex is in U and all of its incoming
edges represent paths. Since the nmaximum degree is assumed to be d, this vertex accounts
for two vertices in U being joined, and d - I being left unjoined. Thus, the number of
vertices in U that are joined is at least (11 -(I- I). The number of phases of the algorithm-"

is bounded by ..... O(d log 111). Each phase takes O(log 2 n) time.

'P.
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3.4. Finding a Maximum Set of Disjoint Paths

We now turn our attention to finding a maximum set of disjoint paths instead of just
a maximal set of disjoint paths. The maximum set of disjoint paths problem (MDP) is:

Given a graph G = (V, E) and a set of vertices U, find a maximum cardinality
set of nontrivial vertex disjoint paths that have their endpoints in U.

This problem is a much more difficult problem than finding a maximal set of disjoint paths.
If U - V, then the problem is to find a maxinmum matching. Finding disjoint paths is the
central step in our maximal path algorithm. We show that MDP is in R)IC by reducing
it to matching.

If the problem were to find a maximnum set of disjoint paths from a set U, to a set
U2 , it could be expressed as a flow problem with unit capacities and then it could be
reduced to bipartite matching [ET]. However, since matching is a special case of MDP, the

.- reduction is a little more difficult. Instead of reducing MDP to a flow problem, we reduce
it to a bidirectional flow problem [PS ex. 8.61 (Law] and then reduce the bidirectional flow
problem to a matching problem. A bidirected graph is a set of vertices, a set of directed
edges, amd a set of bidirected edges. A directed edge a --+ b can carry a unit of flow from
a to b. A bidirected edge a +-- b can either give a unit of flow to both a and b, or give no
flow to either. A bidirected edge can be thought of as a special source that must give the

*same amount of flow to both of its neighbors. The flow problem is to determine how much
flow can be delivered to a sink vertex t.

Lemma 3.2. MDP can be reduced in log-space (O(logn) parallel time) to a unit capacity
bidirectional flow problem.

Proof: We transform MDP into a bidirectional flow problem, where the flow corresponds
to a set of disjoint paths. Each vertex v is replaced by a pair of vertices v,,, and Vut,

with a directed edge vin - v,,,,t between tiemi. For an edge (v, w) in the graph there are
directed edges v,,ut - wi and w,,.t --- vin and a bidirected edge vi,,, Wi, as shown:

Vi e Wo&tb

Vout  tin

There is a sink t, and for each vertex uut corresponding to u E U, there is an edge
uoui --+ t. The problem is to find a maximum flow to t. The bidirectional edges serve as
the sources of the flow.

There is a direct correspondence between a 0-1 flow of 2k in the flow graph and a
set of k disjoint paths in the original graph. Suppose the bidirected graph has a flow
of 2k. The flow is introduced on k bidirected edges. The flow introduced at vin *- vin.

V'... follows paths vivoutv1,in, • • u,inuj.ott and viv, I -1. ... u,,u,,,,1 t to the sink. This
corresponds to the path uj ... vlvv'v' ... ui in the graph. Similarly, suppose we have a set
of k disjoint paths in the graph with their endpoints in U. For each path we pick an edge
(v,v') and introduce flow on the bidirected edge v,,, +-4v',,. The flow then follows the two
segments of the path to the sink. I

e~rn,30



Lemma 3.3. Unit capacity bidirectional fow can be reduced in log-space to matching.

Proof: We use a reduction that is similar to the standard reduction of unit capacity flow
to bipartite matching [CSV] [Wag]. The handling of bidirected edges causes the reduction
to be to general matching instead of bipartite matching. A graph is constructed that has e

a perfect matching if and only if the bidirected graph has a flow of size 2k. The maximum
flow is found by constructing graphs for each possible value of k. The flow in the network
can be reconstructed from a perfect matching.

The table below gives the graph to test for a flow of 2k in the bidirected graph as
follows. The outdegree of a vertex v is denoted by out(v).

Bidirected Graph Matching Graph
Sink t Vertices tI,... t2k

Vertex i Vertices i1 ,...,io,,t(i)

Edge i -* j Vertex i
Edges (i,1), ... "(t3i t(i))

---3 1 z3 .. ( 3 o,,t(i))

Edge i -. t Vertex t
Edges %t- il)...., I tt I,'out(i))

itd t,),. it •,( t2k)

Bidirected Edge i - j Vertices Ij, 1-4
Edges (t ,y"2) (31 31,,, ( )

i • ,

There is a direct correspondence between a flow of 2k and a perfect, matching. In a
perfect matching, if -t-3 is matched with J there is flow from i -, y, and if i) is matched

with ip there is no flow on i -4 j. For a bidirected edge i - j, if t3 is inatched with ip

and 4 ) is matched with j,, then i -, j delivers flow to both i and j, if '- is matched with

2, then i +-- j does not deliver any flow.
We now prove using the above correspondence that the graph has a perfect matching

if and only if there is a flow of 2k.
Suppose the graph has a perfect matching. The vertices ip are matched for 1 < p <

out(i). Suppose a of the vertices i,, are matched to vertices of the form t" and the other

out(i) - a vertices i1, are matched to vertices ii. There is a flow of a going into vertex i.

Since there are out(i) vertices of the form W-d, a of the vertices itv are matched to vertices
Vq, so there is a flow of a out of i. Hence, flow is conserved at the vertices, so it is a valid

-4:
flow. Since the vertices t1,..., t k are all matched with vertices of the form vt, the flow is
of size 2k.

For the other direction of the proof, assume there is a flow of size 2k. Suppose the .

flow into i is a. Then a vertices -T and out(i) - a vertices -V can be matched with vertices
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ip crreponingto i*. So all of the verticcs associated with the vertices in thc original

graph can be mnatched. The vertices 2*1 and 10 can be miatched together if flow is not
introduced on i -+ j'. Since the flow is of size 2k, all the vertices t 1 , .. . , t2k are miatched.

An exaniple of the reduction fromn bidirectional flow to miatching is shown in the
following diagraiii. The miatching illustrated with bold edges corresponds to a bidirectional
flow introduced on the edge b '- c that flows to t along the paths c -*f -, t and b -+a

ba b bC2  c7

b c

a f

atf

tt

-i ected Graph Matching Graph

Comibining the two previous lemmnas and using the Karp-Upfal-Wigderson p)robabilis-
tic iiiatclhing algor-ifhm1 [K .WI, we have the following theoremi:

Theorem 3.1. The inaxiiuum sct of disjoinit paths problemj cani be solved by ani RMAC
algorithin.

* 3.5. The Maximal Path Problem

In this section we. present two algorithins For the niaxinial path jprobleni. The miaximial
p)athI problemn is:

Given a graph G =(V, E) and a vertex r C V, find a siipIle path P starting at
r such tOat P' cannot be extended without encountering a vertex that is already
on tle p jath.

Our results are that the restricted case of the miaximtal path problein for b~ounded degree
graphs call be solved in )VC and the genieral case can be solved in RJ4C.

Tlhme iuaximimal path problein can be solved sequentially b~y tlhc siniIIle greedy algoritll
dhiscuIssedl in Chapter 2. We showed th~at the greedy algorithmn for constructing a miaxinial
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path is P-complete, so it probably cannot be sped tip substantially with parallelism. Here
we show that by taking a different approach, the problem can be solved by a fast parallel
algorithm.

It is a significant result that the maximal path problem can be solved by a fast parallel
algorithm. The construction of a maximal path appears to be a very sequential process,
since to add a vertex to the path we need to know that the vertex is not already on the
path. 'rite initial motivation for looking at the niaximal path probleni is its relationship to
depth first search. Any branch of a depth first search tree a maximal path. The naximal .1
path problem captures some of the difficulties involved with a parallel depth first search..-

In the next section we describe an 0(7t / 2 ' parallel algorithm for depth first search. The
algorithm works along the same lines as the maximal path algorithm and uses a number of
tools developed for it. lowever, our depth first search algorithmi does not depend directly
upon the umaxinial path algorithm.

Both of our maximal path algorithms use a divide and conquer strategy. A path is
found which allows the problem to be reduced to finding a maximal path in a graph of less

than hall' the original size. This path is referred to as a splitting path. If tihe graph has
a vertex of low degree, then a splitting path caan be found relatively easily. [However, the
general case is substantially more complicated. To find a splitting path inl a general graph,
we use the probabilistic matching algorithm of Karp-Upfal-Wigderson. We first describe
the algorithm to find a maximal path in a graph with all vertices of degree less than d,
and then describe the algorithlm for general graphs.

"* 3.5.1. Maximal Path Algorithm for Bounded Degree Graphs

Let G C (V, ') be a graph with all vertices having degree at most d. We give a
deterimiil.tic algorithm to ind a umaximial path in time O(dlogk n). This gives an NC
algorithmu for famiilies of graphs with a degree boun d of O(iog' i).

The basic step of Ihe algorithmi is to find a path that reduces the problemU to filding
ia maximal path in a smaller graph.

Definition 3.1. A path P starting from r is called a splitting path if V - P has at least
two connected components.

Lemma 3.4. If splitting paths can be found in time O(T(n)), then a maximal path can
be found in timne O(T(n) log n). .5

Proof: Suppose P :- rul ... Uk is a splitting path. let u3 be the last vertex on P such
that uj is adjacent to at least two components of V - rul ...u3 . Let C be the smallest
of the comiponents of V - ru u.1 adjacent to uj, and let v be a vertex in C that is
adjacent to u3. If P is a naxiimal path from v in C, then ru', .. uP' is a maximual path
from r in V, so the problenli is reduced to finding a iaxinmal path in C. Since ICI < 11, it
takes at imost, log n iterations of fi l ing a splittirig path andi red cing the pIrobleimi to find
a nmaximal path. lmce the muaximial path problemmi can be solved in ()(T() log n) time.
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We now describe how to find a splitting path. We first take care of the case where
the graph is not biconnected. If r has degree one, then we can follow a path fromn r until
we reach a vertex of degree at least three, so we mnay as well assuine that r has degree at
least two. If the graph is not biconnccted, there is an articulation point v that is in the
samne biconnected comlponent as r. Any shortest path front r to v is a sp~litting path.

The miore interesting case for finding a splitting path is if the graph is biconnected.
For the remiaindkr of the section we assiumIe that G is biconnected. Th'le basic idea in
finding a splitting p~ath is to pick at vertex v (different fromn r and find a path that cannot
be extended to contain any nilore neighbors of' v. This either gives us a splitting path or a
way to construct a mnaximial p~athi directly. Let v be a vertex different front r. We construct
a path, one segmient at a timie, with each segmient going to another neighbor of v without
passing through v. We stop when we cannot acid another neighbor of v to thme pah. This
is (lone by the following simiple algorithm.

Visitfeighbors(r, v)
begin

Let vj,. I v,, be the nieighibors of v;
P r;

w r;-

V, - V-);
for i -Ito m do

if thiere is a pathi wP'v, withi wP'v, V' then
begin

P- PP'Vi;
W ;

end
return P;

end.

After we call Vi.~if Ncighbors,.we add v to P. There ar-e three cases that can occur.
First, if P) contains all of v's neighbors, then Pv is a miaximial path and we are clone.
Otherwise if V - Pv has imiore thanm one connected comnponent, tenm we have a1 splitting
pa~th. The last case is that all the unvisited vertices are in a single comiponent and somie
neighbor of v is not on P. This case is hand led by the following lemmna.

Lemma 3.5. Let P = rul ... Ukt' be a path such that V - P has a single connected
coniponcnt C. If v is adjacent to C but uk is not adjacent to C, thenm a iaxinial path can
be round 1y in NC algorithmn.

Proof: Let u) be thme last vertex other than v on P that is adjacent to C. There mnust be
such a vertex u, since we are assinniing the graph is biconnected. Let x, . xi l)C a path
inl C with u) ad jacent, to xr1 and v adjacent to xj. The path r .. l... ZIVUk . Uj +. is

a inaxinial p~ath. The path is shown in the figure below.

The1 individual steps such ats finding a path between two vertices, testing for articu-
lation p~oinlts, ali( i f1iiig con iiected coin poiients can ll l1 e (bie inl 0(log 2 (n)) Cile on
0(n 2 ) processors. Since the problemn size is reduced by at least half every time a path is
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found that splits the graph, no more than log n stages arc needed. If all vertices have de-
gree at most D(rL), no more than D(n) paths are found~ lby VisitNeighbors. The algorithm
therefore runs in 0(D(n)Jog3 (n)) time on 0(n') processors. The restriction that all] of the

* vertices obey a global degree bound is not necessary for this algorithmn to be at fast parallel
algorithm. It is only necessary that at each stage a vertex of low degree can be found. For
example, if the grap~h is planar, it is always possible to find a vertex of dlegree at miost five,
so this algorithm runs in O(log (n)) for planar graphs.

3.5.2. Maximal Path Algorithm for General Graphs

We now describe an algorithm for the maximal path problem in general graphs. This
*algorithmn also relics on finding at splitting path and redulcing the problem to at problemi of

less than hialf the size. The problem of finding a splitting path is inticli niore involved than
in the p)reviouis algorithm. '[le discuission of finding it splitting path is dlividled Into two
parts. A set Q of vertex disjoint paths is said to separate the graph if V -Q has at. least two
connected1 coiiponents. We first show how we can construct a splittimg path front a set of
p)aths that separates tbe graphl. The construction is similar to the one for finding at splitting
Jpatli in a sparse grap~h discussedl above. We then dlescrib~e liow the separating pathis are
fo ilid . TJl iis is thi e niost conipI icated p~art, of the( algoritliin and~ relies on sonte ye ry p~owerfulI
mnach inery Thie algorithii uses as at sub~rouitine the algoritIii for fi ndinig a inaximu mut set
of disjoint paths described in Section 3.1. Thie resulItinig algorithinm is p~robabilistic, but its
only use of ramdomness is iii (lie miatclm ig suibrou tine in thec algorid(i iii for finding disjoint
paths.

We now describe how at splitting path is found. Onice the splitting path is found,
the algorithini proceeds as time one discussed above. We also assume that the graph is
biconnected. A splitting path can be found in a graph that is not biconnected ats is done
in the bounded (degree case.

We shiow how to construct a splitting p~ath from a small set of vertex disjoint p~aths
that separatfes tite graphI. Sup1)P ose Q Q IQ , . . Q k I~ is a se(4 of verte x (Ilisjoi itt paths. A
subrouatine thiat. buldhs at sin gle pathl tisi t tle paths in Q is used iii I lie construction of
a sp~litting pathi. 'L'he routine /,r'tendl'alh(r, Q, V) construct s at path starting from r that
cannot be extended to include aniy muore vertices of Q. In other wordhs, if the constructed
p)ath is P -- ru I . U, then1 no vertex lying oii any path in Q is contained in any connected

* Component of V -- P) adja~cent to Uk. Such at jathi is saidl to be maximnal with respect to
Q. ExtendPath is essentially at sequnential greedly algoriftliiii. It. bmuilds (lie path b~y ading
segments of the pathis if) Q to the cuirrenit path for as long as possilIe. [he only usc of

p~arallelismi is tin the low-level routines which find shortest Jpatlis and maintain connected
coimp~onents. The routine is: -
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ExtendPath(r, Q, V)
begin

P +-0; s 4-

while there is a path in V - P from s to a vertex in Q do
begin

Let sul -uk be the shortest path in V - P from s to Q;
Suppose uk E Qi, and Q = vlq uq V2 with Iviq'I Iq"V21;
P - Psu ... ukq";

i q';
S 4- 2;

end
return Ps;

end.

Each iteration of the while loop halves the length of some path in Q, so if there are
initially c paths, there can be at most c logn iterations. Each of the steps within the while
loop (such as finding shortest paths) can be clone in O(log2 n) time, so the total time is
O(c log 3 n).

To show how to construct a splitting path from a set of paths that separates the
graph, we begin with the special case where we have a single path which contains all the
neighbors of a vertex.

Lemma 3.6. Let Q, be a path and v a vertex different from r that has all of its neighbors

on Q1. There is an A'C algorithm that finds either a splitting path or a maximal path.

Proof: If v lies on Q1, let Q := {Q', Q"} be the two segments formed by removing v from

Q1, otherwise let Q = {Q1}. Construct a path P = ru1 ... uk that is maximal with respect
to Q in V - v by calling EztendPath(r, Q, V -v). There are four cases to consider.

I) Suppose Ilk is not adjacent to v. If there was a path from uk to v hat contained
no wrtices of P other than uk then P could be extended to contain an additional
neighbor of v withoit inclhling v. Ilence the compontcit of V -- P that contains v is
not a(jacent to uk., so P is cither maximal, or V -- P has more than one component.

Assume that uk is a neighbor of v and let P = Pv.
2) If all neighbors of v are on P, then P' is a maximal path.
3) If V - P' has more than one component then P' is a splitting path.
4) The final case is when V - 1' has a single connected component C and v is adjacent

to a vertex in C. This is precisely the case that is covered in Lemma 3.5, so a maximal
path can be constructed.

Theorem 3.2. Let Q =- {Q,... ,Qk } be a set of vertex disjoint paths where k < c for
sone fixed constant c. If V - Q ias more than one connected component then a splitting
path or a maximal path can be found by an A/C algorithm.

Proof: Use Extendl'ath to construct a path P that is maximal with respect to Q. Suppose
that P is not a splitting path, so that V -- P has a single connected component C. If Q V_ P,
then C is not adjacent to the last vertex of P, so P must be a maximal path. Assume that
Q C 1) and let 2A and x2 be vertices in different compoinents of V --- Q. If )oth x1 and

X2 had neighbors in C, then there would be a path from x, to x2 with all of its interior
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vertices in C, but this would mean that there was a vertex of Q in C. Hence, either x or

X2 has all its neighbors on P. The previous lemma then shows that a splitting path or a
maximal path can be constructed'. I

We now show how to construct a small set of paths that separates the graph. The
paths that we construct are referred to as isolated.

Definition 3.2. A set of vertex disjoint paths Q = {Q,... ,Qk} is isolated if every path 1

between endpoints of different pathis has at least one interior vertex in Q. .

, A set of at least two isolated paths can be transformed into a set of paths that separates
the graph. Let Q = IQ ,...- , Qk} be a set of isolated paths, and let x 1 be an endpoint of...
the path Q 1 and X2 be an endpoint of Q2. The paths Q' = IQ, - X1, Q2 - X2,iQ 3,... , Qk}

separate the graph with x, and X2 in different components of V - Q'.
Aset of isolated paths can be constructed from it set of paths by repeatedly combining"-

4A

paths. A maximum set of disjoint paths is found between the endpoints of e eithers. If
a path P is found between endpoints of Q, and Qj, i y J, then the paths Qi, P and Q"
are joined to form a single path. Phases of joining paths are repeated until no more paths

can be joined. The routine JonPaths constructs a set of isolated paths. The input to
JoinPaths is a set of vertex disjoint paths Q = {Q,... , Qk and a set of vertices not
o A the paths. JoinPaths constructs a set of isolated paths Q' {Q , . ,Q, havery path
in Q is a segment of some path in Q'. l " ba o

JoinPaths(Q, T)

begin :
while the paths in Q are not isolated do

begin .
Construct an auxiliary graph G' with vertices x., for each Qi C5 Q, and] werLices vi for

each vi i p. The edge (caVj) is in G' if (,,v) is at edge in the origial graph;
p(Xa, 11s) is in G' if there is th edge fron a edpoint of Q to vj, and ( , X ) is in.

G' if there is fo udgd between endpoints of Qj and Qj, i / j;
ScanbejoFind a maximum set of disjoint paths P cons.Pjr in s' with their edpoinuts io

o aa c t o ahI ... V a
for each Pt P do in parallel

begin

Suppose P = iP'x with i < j;..o
Qi Q a no; joined appropriately)

7' +- - ,; "'

end
end to

end.

Earlier in this chapter we showed how a maximumin set of disjoint paths cal be com-
peted in R1C by 'sing matching. The ,ani)ilation of ais and the construction of the
auxiliary graph can be done easily is UA/C. TO show that Joinf aths is and (.AC algorithm,

we show that the number of phases (i.e. iterations of the outer oop,), is O(log n).
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Lemma 3.7. The process of joining the paths {Q,..., Q,,} requires O(log m) phases.

Proof: Suppose k joins are performed at phase j. Any subsequent join must involve
at least one unjoined endpoint of a path joined at phase j. Thus there are at most 2k
subsequent joins. The number of paths that are joined at a phase is no greater than the
number joined the previous phase. Therefore, there are at most k joins at phase j + 4.
Because there are at most !- joins during the first phase, there are O(logm) phases.

2I
J? In the maximal path algorithm, it is important to insure that the joining process does

not result in a single path. The following lemma gives a simple case where the joining
process does not form a single path.

Lemma 3.8. If at most 1 joins are performed in the first phase of the joining process,
then there are at least two paths left when the joining process is done.

Proof: The total number of joins performed is at most - 1+ 2(m - 1) = m - 3. The
number of joins required to combine the paths into a single path is m - 1. I

The set of paths joined in a single phase depends upon the particular set of disjoint
paths found by the probabilistic matching algorithm. The number of paths joined in a
phase is however a fixed number, independent of the probabilistic choices made. We denote
the number of paths joined in the first phase of JoinPaths by J(Q,, ... , Qk). The JoinPaths
procedure does not actually require finding a maximum set of disjoint paths to construct
isolated paths, it is sufficient to find it maximal set of disjoint paths. However, for technical
reasons explained later, our maximal path algorithm relies on the fact that .JoinPaths does
find a maximuni set. of disjoint paths. A second reason for using a mnaxiinumu set of disjoint
paths is that it is not known how to construct in parallel a maximal set of disjoint paths
without constructing a mnaximum set of disjoint paths.

A inajor portion of the miaximal path algorithm is to construct a simall set of isolated
paths. We construct a set of isolated paths Q = {Q,. -- ,Qk} where 2 < k < 5. (There
is nothing special about the tile bound of five, it is just necessary to have k < c, for
some constant c.) Ai initial set of isolated paths is constructed by calling JoinPaths(V, O)
(treating each vertex as a path of length one). If we are very lucky and a single path is
constructed, then we can find a path starting at r that contains at least half the vertices
and reduce the problem without bothering with it splitting path. If between two and five
paths are constructed, a splitting path can be found directly, otherwise the number of %
paths must be reduced. The basic idea is to discard some of the paths and use tile vertices
of the discarded paths as well as the vertices not on any of tile paths to join the remaining
paths. This process is repeated until between two and five isolated paths remain. It is
easy to reduce the number of paths significantly with a phase, since any number of paths
may be discarded. It is necessary to make sure that at least two paths remain when the
paths are joined.

Tile algorithm for reducing the number of paths works in phases, where each phase
reduces the number of paths on hand by at least a factor of 1. A pitmase starts with
a set of isolated paths Q {Q ,...,Q,}. To reduce the number of paths in Q, we
choose a suitable k and replace Q by {Q], .- . ,Qk} and join tlme paths in the new Q. The
first value of k that we try is k = " If J(Q 1 ,...,Q, ) < 1, then Lemmma 3.8
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guarantees that the paths do not collapse to a single path. Suppose J(QQ,... ) ) > 7.
Since J(Qi,...,Qm) 0, there is a k > 3"-such that J(Q •,...,Qk) - an
J(Q .•.,Qk+,) < 7-1. This value can be found by checking all values of k in parallel.This value of k still might not be satisfactory, since joining Q,. . . , Q could cause the paths

to collapse to a single path, while joining Q1,. Qk+ 1 might not give enough reduction. If

this is the case, we find a segment P of Qk+1 such that 7-2 < J(Q,..., QP) -1.
If we remove a vertex from Qk+1, we change the number of joins in the first phase of
JoinPaths by at most two. This is because we change the auxiliary graph used in JoinPaths

by two vertices. When finding a maximum set of disjoint paths in a graph that has been
altered in this way, the number of paths found changes by at most two. This "continuity"
property is why we chose to use a maximum set of disjoint paths instead of settling for

maximal. We can find this segment P by testing each of the initial segments of Qk+1 in
parallel. When we join paths, we guarantee that the number of paths is reduced by at
least - 2 since the first phase performs at least that many joins. ".

4

ReducePaths(Q = {Q,..., Qm},V ')
begin ifrif J({Qi,...,Q.,}) < 71 - I then

4 44JoinPaths({Q ,..,Q_-},V' U {Q , ,Q,,,);""

else :-
begin

Find a k > -'- such that J(Q i,.. Q) > - land J(Q 1 ,. ,Qk I) < -1
44 4

Suppose Qk I I = p...pi;
Find an initial segment P = pi ... p j, of Qk I I such that

m- -2 < J(Q,. Qk,P) < -- ;
Joinlaths({ 1 .QkIP}, V' UQk, Q.} U Iron}...3 '1 1 );

end
end.

This completes our description of the pieces of our algorithm for finding a maximal
path. We now put them together and give the full algorithm.

MaximalPath(V, r)
begin

P +- FindSplittingl'ath(V, r);
if P is a maximal path then
return P;

Let ru, uk be a subpath of P such that V ru1  uk has at least two connected
components adjacent to uk. Suppose C is the smallest of the components adjacent to
uk and v C C is adjacent to uk;

P 4- Maxim aIPath(C, v);

return ru, ... ukP';

end.
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I

FindSplittingPath(V, r)
begin

if V is not biconnected then
begin

Let v be an articulation point in the same biconnected component as r;
Let P be a shortest path from r to v; %
return P; %

end
else

begin
comment First we find a set of paths that separates the graph;
Q = {Q ,..,Q, ,- JoinPaths (V,O);

if m = 1 then
reduce the problem directly;

while m > 5 do
ReducePaths(Q, VI);

Let -x be an endpoint of Q, 1and X2 be an endpoint of Q2, Z, X2 # r;
Q'-{QI - XQ2 2, ,Q };
comment The paths Q' separate the graph, we now find the splitting path;

P +- EztendPath(r, Q', V);
if P is a splitting path or a maximal path then
return P;

without loss of generality, assume xZi has all of its neighbors on P;
if X1 E P then

Q - {P 1 ,P 2} where P and P2 are the segments of P - Zr;

else
elQ" 4- {P}; .
P +- ExtendPath(r, Q", V - XI);
if P is a splitting path then

return P;
else if Pzj is a splitting path or a maximal path then

return Pzr;
else

begin
Construct a maximal path P' using Lemma 3.5;
return P';

end
end

end.

Each of the calls to MaximalPath reduces the problem by half, so it is called at
most log n times. The most time consuming steps in FindSplittingPath are the calls to

ReducePaths. Reduce Paths runs in polylog time and is called O(logn) times so the entire

procedure runs in polylog time. Hence, we have the following theorem:

Theorem 3.3. The maximal path problem is in R)MC.
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3.6. Depth First Search

In this section a parallel algorithm for depth first search is described. The depth first
search problem is:

Given a graph G - (V, E) and a vertex r E V, find a spanning tree T of G that
could be constructed by some depth first search of G with root r.

Our algorithm runs in O(v/nlogk n) and uses a polynomial number of processors. The
original motivation for looking at the maximal path problem is its relation to depth first k

search. Any branch from the root to a leaf in a depth first search tree is a maximal path.
The maximal path algorithm does not apply directly to give a fast parallel algorithm for
depth first search, since 0(n) maximal paths might be necessary to construct a depth first
search tree. However, the general techniques and tools developed for the maximal path
problem are used for depth first search.

The depth first search algorithm uses the same strategy as was used for finding a
maximal path. A partial solution is found that allows the problem to be reduced to
smaller problems which are solved recursively. The algorithm finds a set Q of disjoint
paths such that the size of the largest connected component of V -- Q is less than -n.
These paths are referred to as a separating set of paths. Note that this usage of the term
separate differs from our usage in the description of the maximal path algorithm. An
initial segment of a depth first search tree containing Q is constructed. Depth first search
trees are then found for the remaining components. Since the problem is halved at each
level, the depth of recursion is at most log n. The procedures for finding separating paths
and constructing an initial segment of the tree both take O(V/-logk n) time. We first
describe the construction of thie initial segment and then discuss the more complicated
step of finding the separating paths.

The routine !nitialSement is given a set of disjoint paths Q and constructs a subtree
7' of sonic depth first, search tree T with all the vertices of Q contained in T'. In the depth
first search algorithm, there will be O(vni log n) paths in Q when !nitialSegment is called.
InitialSeament is essentially a sequential algorithm; however it uses the parallel routine
ExtendPath described above. InitialSegment maintains the connected components of the
vertices not in the subtree T'. A component is said to be active if it contains a path from
the set Q.

InitialSegrnent(Q, r)
begin "7" #-- r;

while tlhcre is an active component of V - T' do
begin

Let v be the lowest vertex on T' adjacent to an active component C of V - T';
P.- Eztend1'ath(vQC);
Add P to T;
lecompute the connected components of V -- ;

end
end.
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Each phase of the routine ExtendPath reduces the length of some path in Q by a factor
of at least one half. If there are initially m paths in the set Q, then InitialSegment will
take O(m logk n) time.

Lemma 3.9. The tree T' constructed by InitialSegment can be extended to a depth first
search tree.

Proof: It suffices to show that there are no paths between separate branches of T' that
have all their interior vertices in V - T'. This condition holds throughout the execution
of InitialSegment since the extensions are made at the lowest vertex adjacent to some
component. I

We now show how to find a separating set of paths. We construct a set Q of disjoint
paths where Q contains O(vf log n) paths and the largest component of V -- Q has size

at most 7. The procedure runs in O(Vi log'i n) time. The routine Separate constructs a
set of paths and then attempts to reduce the number of paths while keeping the connected
components of the vertices not on the paths small. The paths are reduced by joining
them together or by removing vertices froiu them. The routine maintains several sets of
paths. The set Q contains paths that are in the separator. Once a path is put into Q it is
committed to the separating set and is not be removed. The set S stores the paths that
are currently being worked on. The set R is used for temporary storage; paths are put
into R to set them aside for the next phase. The vertices not on any of the paths in Q, R,
or S are in a set T. The size of the largest component of T is at most !. The algorithm
runs until R and S are empty.

In Separate an iteration of the outer while loop is referred to as a phase and an
iteration of the inner while loop is a subphase. Each phase halves the number of paths in
S. A subphase reduces the length of each path in S by one. Subplases are repeated until
all of the vertices in paths of S have been moved to R or 7'. The paths of R are then
moved back to S for the next phase. Phases are repeated until R and S are empty. In the
routine below, Join(S,T) is a procedure that performs the first phase of JoinPaths(S,T).
Join(S, 7') finds a maximum set, of vertex disjoint paths in 7' between the endpoints of the
paths in S. The paths in S are then joined using the disjoint paths that were found.

Separate
begin
Q 0 ; R ,0; T 0- ;.
S,-V;

while S $ 0 do
begin

while S -- 0 do
begin

Join(S, T);
Move the joined paths from S to R; ..r
Move one endpoint of each remaining path in S to T;
if there is a component in T of size > 2 then

Fix the component size by moving a vertex from T to Q;
end

S ,--;R -0;
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Move paths of length > Vrn/ from S to Q;
end.

The goal of the routine Separate is to remove all the paths from S and R while making
sure that the largest connected component of T remains of size at most !. Separate

accomplishes this by alternately joining paths of S and by moving some vertices from
paths in S to T. The paths are removed in two different ways. When paths are joined,
any paths of length at least are put into Q. The other way paths can be removed is if
all of their vertices are put into the set T.

A subphase begins by joining as many paths as possible using the vertices of T. The
paths of S that are joined are then put into R and set aside until the next phase. The
next step is to move one endpoint of each of the paths remaining in S to T. The moving
of endpoints accomplishes a dual purpose; it makes new vertices of S endpoints, allowing
additional joins in the next subpbase, and reduces the lengths of the paths in S. Before
the endpoints are removed, each connected component is adjacent to the endpoints of at
most one path. This means that when the endpoints are moved from S to T, the only way
components of T are merged is if they are adjacent to the endpoints of the same path in
S. At most one component of size ' can be formed each subphase. If a large component
is formed, then removing the endpoint that caused it to merge reduces the components to
size less than !. When the vertex is removed, it is placed into Q as a path of length one.

2
The following lemmas establish that Separate constructs the desired separator in

O( /n log n) time.
Lemma 3.10. The largest connected component of T has size at most .

2

Proof: The only time vertices are added to T is when endpoints of paths in S are moved
to T. When this is done, if a component of size greater than is formed, a vertex can be
moved from T to Q to reduce the components to size at most . I

Lemma 3.11. There are at most f subphascs per phase.

Proof: At the start of a phase, the paths in S have length at most V/n. Each subphase
reduces the lengths of all the paths remaining in S by one. I

Lemma 3.12. The number of phases is at most logn.

Proof: Each path at the start of a phase is the join of two paths from the previous phase,
so the number of paths in S is halved by each phase. I

Lemma 3.13. When Separate is finished, there are o(Nr-log n) paths in Q.

Proof: At most Vn- paths of length %n can be placed in Q. Each subphase places at
most one singleton in Q. Since there are at most f log n subphases altogether, there are
O(V/-nlogn) paths in Q.

A subphase takes polylog time since the time it takes is dominated by the time it takes
to find a maxinium set of disjoint paths. Since Separate has at most V/n log n subphases,

Separate runs in O(Vfn log' n) time. The resulting algorithm is probabilistic since it uses
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the algorithm of Section 3.4 to find a maximum set of disjoint paths. The depth first search
algorithm does not actually require a maximum set of disjoint paths, it would suffice to
find a maximal set of disjoint paths. However, as was mentioned above, it is not currently
known how to construct a maximal set of disjoint paths without finding a maximum set of
disjoint paths. For graphs with bounded degree, the deteri';stic algorithm for finding a
maximal set of disjoint paths can be used, so for that restricted case the depth first search "

algorithm is deterninistic with approximately the samuc time bound.

3.7. Discussion

In this chapter we have presented parallel algorithms for several path problems. The
major results of the chapter were that a maximal path can be found by an A./C algorithm
and that a depth first search tree can be constructed in parallel time (n1/ 2 +-). The
algorithms of this chapter illustrate a number of techniques for parallel algorithms. None
of the algorithmis depends on path doubling, although path doubling is present in a number
of implenentation (etails. [ie algorithm for finding a long path used a novel probabilistic
approach. Probabilistic methods seem important for quite a few I)arallel algorithms. The
algorithms for finding a maximal set of disjoint paths and the maximal path algorithm
both make use of the iterated improvement strategy. The maximal set of disjoint paths
algorithm built tip its solution 1y adding paths to the solution and the maximal path
algorithm reduces the size of a separator hy joining paths. The algorithm for finding a
muaximnun set of disjoint paths reduced the iproblem to matching.

There are a number of open problems related to these path problems. By far the
most important open proble)m is whether depth first search can be solved by an ,RNC or
NIC algoritmni. The major obs.acle to speeding tip our algoritlhmt to an ,.A[C algorithm is
that it appears diflicult to reduce the lengths of the paths sul)stantially when joining paths
while still making sure that the connected components of the vertices not on the paths
remain simall. Although these dilficulties are technical in nature, it might be necessary
to take a different approach to get a substantially faster depth first search algorithm. A
second interesting open problei is whether the maximal path problem can solved in .VC.
One way this could be (lone is to find a deterministic algorithm for matching. It would
also be interesting to find a simipler algorithm than ours for the maximal path problem,
even if it still relied on randominess. Our results on the maximal path 1problem and depth
first search do not carry over to directed graphs; the directed variants of the problems are
open. A final open problem is whether a maximal set of disjoint paths can be found by a
fast parallel algorithmi withoL t using imtching.
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Chapter 4 Approximating P-Complete Problems

4.1. Introduction

In this chapter we investigate various ways of finding approximate solutions to P-
complete prob~lemns. The type of approximation that, we are interested in is fast parallel
algorithmts that give solutions that, are close to the desired solution. We present results
for parallel approximation of P-coiupletc problemts that are very similar to the results on
sequential approximation of NP-complete problenis.

There are a number of reasons to look at applroximating P-complete problems. The
inain reason is since P-complete problemis probably are not amenable to fast parallel so-

* lution, it is important and interesting to see what can be done on these p~roblems using

* parallelism. A second reason to look ait app~roximuation is to develop the theory of paral-
lel approximation iii analogue to the sequential theory. The p)rolemis which arise when
looking at. approximate solutions are often problems that are close to the "boundary" of

* what can and cannot be done efliciently with parallelism, thuns they are important for the
general study of parallelism.

In this chapter we look at at tnmber of P-complete probleis andl examine to what
extent they can l)C approximated by fast parallel algorithums. The first. p~rolblem is the high
degree subgraph problem. T[his problem is to find at vertex induced subgrapli of at graph
that has aill vertices of (degree at least. as big as sonie given k. We show tight bounds
on the (degree of ap~proximationi achiievable for at variant, of th~is p~roblemi by at f tst parallel
algoritli iii assu lming that P / N~C. The next topic that. we look ait is approximating ni uber
problem s and( show that it is very sinmilar to the sitiat-i()i for seq tien tial comipu tation.
Some IP-conmplete nuumber problems can be solved by fast. parallel algoritiliins when the
inubers are sin all. We give two exampIles of prol dcinis iiat cani b e approx imate vo e ry well

byv solv i mu restricted cases of the( problemi and( thenl reltiii g Lthe soluiition to thle originial
p~rob~lem. WNe define strong P-completeness analogously to strong NlP-conipleteness so that
we cani identify nuimber prolblens that remain dlifficutlt even if the iminibers involved are
smiall. We show that the problem of computing at first fit decreasing b)in packing is strongly

* P-comiplete. We also show how a related packing schemec which performs as well as first
* ~fit decreasing can be computedl in NC.

4.2. The ic gh Degree Subgraphi Problem

The high degree snbgraph problem is:
Given a graph GC (V, E) and ant integer k, find the maximuutu induced smtbgraph
of the grapih that has all vertices of dlegree at least k.

It is interestinig that this p~robleim is P-coumplete since it is so simple. Most known IP-
Comilplete graphl theory problem is have somie oth ier device, sticli as weights or ani ordering, S

that imnake themt dlifhic tilt. IHowever, this p~roblemt conldl be called a "purely combhinatorial
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probleln." fhe high degree subgraph )roblem can be approxinated in several different
ways. In the next section we derive bounds on the degree of approximation that is possible
for a variant of the problem. We also discuss other approaches that construct subgraphs
with all vertices of high degree.

The high degree subgraph problem can be solved by a simple sequential algorithm.
The algorithin discards vertices of degree lesS than k one at a time uiiil all vertices have
degree at least k or the graph is empty. The correctness of this algorithni follows from
two easy lemmas. The first lemma establishes that there is a uniqmie maximuni indiced
subgraph of G with minimunim degree at least k. We denote this subgraph by lIDSk(G).

Lemma 4.1. Let S and T be maximum induced subgraphs of G that have minium-
degree at least k, then S = T.

Proof: The induced subgraph on S U T has minimum degree at least k. Since S and 7'
are maximum, ISl = ITI :- IS uT, so S - T. I

Lemma 4.2. The sequential algorithnm oIutline(d above finds III)Sk(C).

Proof: Let S be the induced subgraph found by the algorithm. Since the vertices of S
have degree at least k, S CI IIl)SA.(G). Suppose that S / IIDSk((;). Let v be the first
veltx of lll)Sk(G) discarded by the algorithm and let 7' be the graph just before v is
discarded. Since v has degree less than k in T" and IIDSk(G) ( T, v must have degree less
tha,, k in 1lI)Sk(G), a cont1,1diction, Hence S = IIDS k(G). "

It is possible that 111)SA(G) is empty. The following leim ma duc to Erdo;s [l', estab)-
lishes an implortant case where IIDSA((;) is nonempty.

Lemma 4 3. l1'a graph hims n vertices aId rrt edges then if has an induced subr ; 1dm with
min imlmi degree at least "

Proof: The proof is by indct.tiom on the mimber of vertices in the grahtli. The result, holds

for graphs j()osist.ing of a single vertex. Sti)pose the result, holds for all graphs witih fewer
thai 'n vertices. Let C be a graph with n vertices and 'm edges. If all vertices of G have
degree at least ' , then the graph itself is an induced sumbgraph with minimum degree
at least [ ", ]. Otherwise we can delete a vertex of minimum degree along with its incident
edges, leaving a graph with n 1 vertices and m -- k > m - [ " edges. By the induction
hypothesis the remaining graph has an induced subgraph with minimum degree

n - - -I-n - n

'lie high degree subgraphi problem can be reformulated as a decision problem IIDS,
by asking if a specilic vertex v is in (IG)Sk(C). We show that I IDS is I'-complete by giving =I
a red maltion from the mnoliolomie circiiit. value problem. We also give a stronger result by %
showiuig that it. is l'-coilplete t-o det,,r,'mi,' if IIl)Sk(C) is nonemupty.
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4,Theorem 4. 1. HDS is P-complete. 4.

Proof: The proof is a reduction fromi the mionotone circuit value probleml. The AND
and OR gates are assumied to be connected to one or two other ga tes, and th inputs arc
assumer to lhe connectedl to just one gate. Let ~ ,~be a mionotone circuit. The
inputs amd outputs of each gate are assumied to b~e numibercd, with the connections given :

* ~explicitly. For examiple, if AJ~ receives an inpult fromn 03j, we might be given that output I
of 0, goes to input 2 Of 13k. We construct a graph C with at distinguished vertex v suich
that v E- lII)S3 (G) if and only if the circuit evaluates to true.

The gate Ak is simulated by a collection of vertices. There is at vertex k in the subgraph
associated with A that is in lIDS 3 (G) if and Only if A3~ evaluates to true. Thme subgraphs
for an AND gate afl(l am OR gate are shown below. The vertices k, and k,) are associated
with the inlputs Of A3 andl k, and k!) are associated with the output-s Of AN. The subgraph

* for a 0-INP"UT A~ is a1 singleton Vertex k~i and] time subgrapm for at I-INP'UT 13k is at clique
* of four vertices with one of themn k,1. The subgraphs are connected together in a inanner

that corresponds to the gates of the circuit. If output p of 13, goes to iii Put 11 Of i3k, then
there is an edge front)'' to kq,

rue circuit is simuulatedl ly conlp)uting [lDS 3 (G). This can Ibe done lby discarding
vertices of' (degree one and two until all vertices have degree at least three. A gatefi
receives a false input at ki, if the edge going into k1, is removed. All the vertices of the

* subgraph associated with an ANI) gate are renmovedl if it receives at single false input, and
all of the vertices of an 011 gate are remioved if it receives two false inpu)its. Tlhe vertex
associatedl with at 0-INI' is always removed, and the vertices ;tssociated with a I-INP)UT

*are never reimoved. Note that vatlue('s (10 rot propagate b)ackwardls. For exam ple, if an1 edlge
* going into k', fromn a different sulbgraph is relmovedl, thme vertex kis not removed b~ecause

of that.

Ik k' c

AND gate OR gate

Our proof that Ih1)S is P-comumplete is just for k -:3. However, it is not, difficult to
miodify the proof to show that. the Iproleml is P-coinplete for any k > 3. For k 2, it is

* possible to find l!IJSk(G) with ain N/C algoritm. Tme algorithmn for coipt:iing I()S-2(G)
has log nt phases, where each phlase removes all chains. A chain is ait of vertices that
starts with at vertex of (degree one and contains no vertex of degree greater thanm two. The
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chains can easily be identified1 by path (lotibling techniques. When the chains arc deleted,
m~ore vertices of degrec one inighlt be create'(], however each new vertex of degree onle
reqjuires the rentoval of at least two chains, so the nuniber of chains decrease,, by at least
half each phlase.

The P-comipleteness restilt can be niadle stronger in the sense that the problemn of
deterniining if JII)Sk.(G) is nonipty is P-com1Pletev. In ilie ]text Sectioni. we dIiscuss the
problei of deterining the largest k suich that Ill)SA (G) is iioniniit ' . UIlie st ronger P-
comipleteness result shows that this problemn probabfly canit b~e solved exaict IN, by an Nk'C
algorithim.

Theorem 4.2. The problum of (icterfliiilg if IIDSA (G) i*S 1i0i1tii1114Y i., I'-coiiijlIte.

Proof- The proof is a reduction fromt the itoiotonle cil"rc ii \Al lit p~rolemii. Thw comistrulc-
tion of the previous theoremi is miod ified So that givenl a1 tin ot ol e cire iiit . i i

graph G is constructed suich that lIDS 3 (G) is noneiiipty if an Ir yi h ip.o h

- clircuit is true.
Thfe snbgrapms and conne1cCtions for (lie A NI) gales, 01? gates, mid 0 INN -I' VS are the

samiie as in the previous construction. Thle stibgrap)h For the I I 1'F IS

ki kS

If the gate fli receives an input front /3k, there is and edge front C, to Jp,. Th'lere is a binary
t ree thlat, has as its leaves the vertices k, of H it, I -I NIPU TS /1k . Tuel( on ti t vertex of' thle
sit bgraplm for time finial gatec is the root. of lii is tree.

'['lle coin 1)"t-; tati1Of li)S3-(C) siiu ilales tile circ it ill tie sarile mniamner as dlie Iprevi OliS
tlieorerir. 11' the final out pit is retiovedi, thieti all of I lie vertices of t lie I ree are reinoved and
then all of the I -INI 'JI S are retimovel. '[ilts Causes all1 of, Iflie vel1c, toe Ii)he rejliloved, so
JI)S3 (C) is eiiipty. If tile finial Otp lut is riot. rericoved , tOen the vertices of the tree and the
1-INPUTS are not remnoved, so a subgraph wvitli ininimucini degree three is left.

4.3. Approximations to the Hi1gh Degree Subgraph Problem

If a problet is knmowni to b~e l1-comi plete, Ithere is lit1. It vhope of findo liti 1, an NC algorit 1i1mu
to solve it. As is often donie with N I -comi phete Iproblenis , we can lower on r s ighrts and
att-emipt to find an aplproxiiliate solurtion . 'l'lie It igh degree stibgrapli IproI~l&ii is well sil ted

for approxiiiiatron since it. can be rephrased as an op1 tiniizal ion prolenIt . 'Ilie o; t ii iiizat ion
probleiti is to ask what is thle largest, k suchi that, 11)5 A IC is Irene in pty . lls valuie is
denoted JifS(C) . It follows fromt Thieoremt 4.2 tihat itis I -coinit to cominput e 1 5()
An approxinlate solu tion to fillis problei is to finmd a A -I Ch hat /II U.) -- k - 1~ P1S (C)
for soIIIC fixed r I . We say that thlis is aIn approxiiation witiii a fact~or of v. W"( show
that this high degree subgri phrobleni can be appruxinmiatecl to t factor of c for any c > 2
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in .AIC, btut cannot I)C approximiated ill AC for c < 2, tinlICs 'P VC. This result is
*analooums to at miinir of restilts on approximating NP"-conipltp prolem where lower

bounds on the degree of approximation are known assiunung that P -/ A/P. For example
it is known that graph colorinig cannot le approximuated to a factor of less than two [GJ 1]
and p)recedence constrvainedl schetliC(ng canniot beC approximated to at factor of less than

Theorem 4.3. For any constant c > 2, the optlmizmt on problem call be solved by all JVC
* algorithin to a Factor of c.

*Proof: Let ( > 0. The following rouitine Test(V, k) rettnrns an answer which is either
* ~"the graph hias no sithgraph wliuit miiilnmin degree V", or "the graph has at suibgraph with

mnn inni degree at least 2-~ k.

Test(V, k);
begin

while V /0 do
begin

U1:- {v ( V I leg(v) < k};
if ('I < IVI then

return "IIDS(C) > V,'k;
V :rV U;

end
retiurn "III0-.(G) < V"

end.

Eachi tratioil or the whle loc d01)(iscard(s all vertices wit dlegree less than k. Since a
* ~~~Conist anit frac tioni ol the vertices Is dIiscardIed ini each iteration , there arc O(log n) iterations.
* ~~he algorit limi Cali lme imici eiit('cl so tHat a -miigle Iterat ion tdkes O(logn l ittle, So it is

;ti JC algorith ii. 11' 7l,:si V, k) I eni-i at,es Witlh an iii jmpy set of vertices, the o graph (toes
not hiave ;% s~Ilbjgn;IJph Witlli u11imiuunu (egrece k-. Suipposetit, wl'esl(V, k) t~ermiinates with n'

* ~~vertices, l iiiiig t fat. lH).S~(C") > k. The miiiIer or edges wheni 'h.,t(V, k) termiinates2
is at. least, ', k'n', so by Lemmuia 4.3, G' 1uas a1 s1ubgrapliwt W nii~ii dlegree at least

-2k. [lie 1)roc(e(l ire 7Ic.q t( V,k) is app1 lied for each valuec of k bet weeni I an(l rt. A value
k is foiu id where tie graphl has a sulbgraphl of (legree at least I k bilt no stibgraph of

* degree k i . This gives an approximation to within a factor of -- I

- * ~The nicxt the orcei show, that. the previotis rcstuilt is esseuittially the best possible as-

sumiing th at P / A/C. We show that a circLi it. can be sun itilated b~y a graph)I which has
IMS(C) 2k if thle otilmt of thli ci rctiit is tritc anid 111)5 (C)- k II if it, is false. If the

p~roblem iicot:lo be approximuiated by at factor of less tli at two tfli en the following construction
couild be used to solve tl' mlonLotonle ci rctiit. valtie problenm.

Theorem 4.4. If P / K/C, then it is not possible to ;ipproxiniae JUX (G) inl JVC by at
factor less tantwo.

Proof: liis theorem is p)roved by gi vintg a log-space tranisfonunat ion of a monotone circuit
%to a graph G WhIiich has 1)5() 2k if' the ontpti t of the ci rciilit is truec, aido iliPS(G)

k FI if it. is false. TIhe figiires iire for k 31, the genueralizat ion to othmer values of k is
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straightforward. For each AND and OR gate there is a subgraph. These subgraphs are
connected together in a manner that corresponds to connections of the circuit. There are
also subgraphs which are called expanders. An expander is shown below. The expanders
are used to fanout values and are also used in the ANI) gate. The vertices *1 ,... I are
the expander's inputs and o,... ,oi are the expander's outputs. An expander consists of
a number of levels of k vertices each. Adjacent levels are connected by coiiplete bipartite
graphs. Each level is connected to ain output of the expander. The expander is terminiated
with two layers that have k + I vertices. The vertices of the last level are joined to form a
k + I clique.

oj 02 03 .

I

i2 . . .

The OR and AND gates are illustrated in the figures below. The gates have two

sets of input vertices it, ... ,ik and i,. . . ,i and a set of output vertices 01,... ,ok. The
output vertices of a gate are connected to an expander which is connected to the input

"- vertices of the appropriate gates. The expanders fanoitt values and insure that inforiation
is propagated correctly. In the AND gate, the long rectangle is a k-expander. The output
of the final gate is connected to an expander which goes to all of 1I.h ilipiit vertices of
gates that correspond to connections froin I-INI'I'S in the circuit. The input vertices of
gates that receive -INPUTS have degree 2k and tihe input vertices of gates that receive
0-INPUTS have degree k.

The circuit is silnulated by computing lIDSk t-2(G). This "evaluates" the gates in
topological order. A value is represented by a set of k vertices. A group of vertices all with
degree at least 2k indicate true and a group of vertices of degree at most k-1- I indicate false.
In computing lIDSk+2 (G), the vertices indicating false values are removed. If the input
vertices il,... ,ik of an expander have degree k, then all of the vertices of the expander
are removed, whereas if they have degree 2k, they are left. This is the manner in which
values are propagated. When an AND gate is simiulated, all of its vertices are reiioved if
at least one of it.s inputs is false, and all the vertices of an OR gate are removed if both
of its inputs are false. If the output of the final gate is false, then the expander that goes

J€

back to the 1-INPUTS is removed. This causes all of the remaining vertices to be removed,
so Ul)S(G) < k- 1. If the final output is true, then a gral)h with ,tininmum degree 2k is
left, so !IDS(G) 2k. HDS(G) > k + I since an expander has a suibgraph with nlinintun

degree k + 1.
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S~3

OR gate

3 23

i'31

4. O 02 03

AND gate using a V -expander

* 4.4. Finding a High Degree Subgraph

A second approm ' Ii to aj)Iproxiniating the high dlegree Sujl)trjaj prolem is to attlnpt
to find a subgrapli withi bigh (degree with~out insisting th~at it is thc miaximuin sulbgrajph with
that (degree. Wc discuss two algorithms for this type of appjroximnation. One algorithm

* isca-rdis vertices of low (degree until all vertices have a certain degree. This algorithin
constructs a sti)ergrap~h of I!JSk(G). The algorithmn exhibits an interesting relationship
between the tinme it takes and how. goodl the approximation to lII)Sk(G") is. The second
approachi is to relate a Itighi degree sulbgraph to a maximum dcnsity stibgraph. The problem
of constructing a maxininm (density snblgraphl can be redunced to a uniit callacity network
flow prolIenl, so it canm be solved in Ri/C.
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* ~~Ali approximiationl to the Jproiblent of coin puti ug lIDS k()istfndaspegaho
* iIDSk(GI) that has all vertices with degree at. least r~Th closer c is to one, the better

the ajpproxinilation. The result of the previous sec tion shows that this is not p)ossible' with
an NIC algorithmn for c a constant less than two, unless P = MC. lit this section we give 4

a famnily of algorithms for this type of approximiation. The algorithmn A ap)Iroximiates to j
it factor c .,I(n) aind runs in timte T 1 n). rhe (legree of apjproxintation imnproves ats the run
tune increases.

The sequtenltial algorithmi for coni~itting Il)Sk(G) discards vertices of dlegree less than
k umntil1 all vertices have degree at least k. The reason that this algorith in appears inherently
sequential is that it is difficult to predict which vertices eventunally have dlegree less thtan k.

* When vertices are discarded, somie other vertices have their degrees redutced to less than k,
* and thenm they are also discarded. It is possible that all vertices that initially have (degree

at least k are remtoved. One way to control tie numiber of vertices that are discarded is to

*throw out vertices of degree mnuch less than k. If vertices of (legree k arc remioved, then
the nuniber of vertices that initially have degree at least k that get remioved is bounded.

* This is formialized in the following lemmia:

Lemma 4.4. If GC- (V, E) if an n vertex gratph with p vertices of degree less thn k, then
G contains a suIbgraph wi'th £niihmln degree k that has at least n - 1Pvertices.

42

Prof Sppsvetcsodeeelsthn are rentioved until all vertices have (degree

at least ' . Let Sk be the Set of Vertices t hat initially have diegree at least k that are
4

renioved. B~efore at vertex Of Sk is reinnoved, ;1,mnust have had 3~k edges reinovedl that goto
4 g

-it.. Each vertex th at, is relflovedl call hnave ait. Imost. k edges whnichn go to iitelnnlers of Sk that
are remiovedl after it is. Puitting these two Facts together we have 3k iso < kp 7)- 47 ISkI, SO

k'A* I < ". H ence at not vertices are rewioved.

TI'le leimnima pr-ov ides at way to li md it suhgraph withn ininiimnumni degree k in 0(n 1/2 log n)
timte assmi muing thiat, the graph has at sublgrali with II iinnitini degree k. If lID)S k(G) is

* emlpty, thenl thne algorithml mnight tecrillilak.t with anl einnj)y set, of vertices. Thel algoritimn

* b'indSubfjraphlI(V, k)
begin

while at least n 1/2 vertices hiave degree less than k do
remnove vertices of degree less tihan k;

while thecre is a vertex of (degree less thwn do
A. 4

remniove vertices of degree less than
end.

Each iteration of at loop takes O(log 7t) tinnie. The first l)01 ) cannot be executedl more

thanm n 112 timeIs Since it remnoves at least n 1/2 vertircs ecjtl iteration. Leunina 4.1 insures
that tihe secondl loop) does niot reitnove intore t. Ian n / vertices, so it also has 0(n' 2

iterations.
Thnis algori thnin canl be general izedI to onle in at ulses mtntre. t inait two Jplnases of discatd ing

vertices. lit I,'ndflhI.'I(rnapf, tIhe ;IpIp4xniniah~oln Fator andn lit( rimt inei dnepeilu upon tite
* fin functiomn f(n) . Thme algoril h nin Fiid'h yra ph I corresp4nnls t~o Iind'iubgraph2'- with f (n)
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ni/2 . The algorithm FindSubyraph2 maintains two counts, bound and threshold. A phase

consists of discarding vertices with degree less than bound. As long as there are at least
threshold vertices of degree less than bound, then vertices with degree less than bound are
discarded. When the number of vertices of degree less than bound is smaller than threshold,
the values of bound and threshold are changed. Phases are run until all vertices have degree
at least bound or the graph becomes empty.

FindSubgraph2(V, k)
begin

threshold := n/f(n);
bound = k;.
while V . 0 and there is a vertex of degree less than bound do

begin
S := {v I deg(v) < bound};
if ISI > threshold then

V := V - S;
else

begin
bound := bound/4;
threshold :=z threshold/f(n);

end
end

end.

Theorem 4.5. if lIDS .(G) is n1ofe1IcI)ty, the algorithin finds a sibgraph with minimum
degree at least J IO( f(n) log n ,)gf(n) n) time.

Proof: A phase is the group of iterations for which bound and threshold have lixed values.
There are logf(,,) n phases, since tie value of threshold is reduced by a factor of f(n) at the

lend of each p)hase and threshold is initially f ,). When a phase ends, less than threshold
vertices have degree less than bound, so the minimum degree of the subgraph that is found
is the value of bound when threshold -7 1, which is - When a phase begins,
there are less than f(n) • threshold vertices of degree less than 4 • bound. It follows from
Lemma 4.4 that at most 3f(n) threshold vertices are removed by removing vertices of
degree less than bound. Since at least threshold vertices are removed at each iteration, there
are at most .lf(n) iterations per phase. Ilence there are at most 'f(n) Iogf(,,) n iterations
altogether. An iteration takes O(log n) time, so the algorithmi takes O(f(n) log n log,(,,) n)
time. I

If different values are used for f(n) an interesting time/performance trade off is ex-
hibited. When f(n) = log n the algorithm is inJVC and a subgrai)h with minimum degree
O(dn-'), for any c > 0 is found. Time and )erformance figures are given in the table
below. The time is given as the total number of iterations, neglecting tile factor of _2"
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Iterations Approximation Factor

f(n) f(n) logf(,,) n 4(,f,(-,) n-I

n l/k knIl/k 4 k-1

4k 4 k log n I Ilk
2k 4 n

ogk logk I n 2/k log log nlo n k log log n

2 d - 2 v ] 0 g n14 t h/o g

Tie/perforinance relationship

4.5. Finding a Maximum Density Subgraph

An alternate approach in constructing a subgraph with high minimum degree is to
look for a maximum density stibgraph. The results that we get. by this approach are
stroinger than the previous results for certain cases, although the resulting algorithms are
probabilistic. The density of a gral)h is the ratio of the tniber of edges to the nunber
of vertices, so a maximum density subgraph is an induced sul)grap)h for which this ratio is
as large as possible. We denote a niaximum density subgraph of the graph G by MD(G)
and the maximum density by A-l-(G). Our first leinxa shows that a maximum density "
subgraph has high degree.

Lemma 4.5. A maximum density subgraph of G has all vertices of degree at least M D(G).

" Proof: If the inaxinmn density subgraph had a vertex of degree less than At l)(G), then
the density would be ilcreased by deleting that vertex. I

The maximum density subgraph is related to the optimization problem discussed in
the previous section. Coimputing the value of the iaximnuima density sulbgraph gives an
approxiination of lHiS(G) that is guaranteed to be within a factor of two.

Lemma 4.6. 2MDJ(G) HDS(G) > MD(G).

Proof: Let H be a subgraph of G with minimum degree IIDS(G). Since H has at least
J H 1 IDS(G) edges, its density is at least -2 R-S(G). The density of H is no greater than

the maximum density, so 2MD(G) > HDS(G). Lemma 4.5 imiplcs that lIDS > MD.

The minimum degree of it maximum density subgraplh can dilfer fromi l)DS(G) by a
factor of two. An example of such a graph is:

>"p

The value of lIDS(G) is two, while the iniiumuan degree of a umaximumim denisity subgraph
is just one.
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The naximum density subgraph can be constructed by an RM.C algorithm. The
algorithm for constructing a maximum density subgraph relies on a reduction due to
Goldberg [(ol, which reduces finding a inaximum density subgraph to a unit capacity
network flow problem. The flow problem is solved using the techniques of [KUW].

Theorem 4.6. The problemn of finding a imaxinmunm density stibgraph can be reduced in
log-space to the probleim of rinding a inaxnimum flow in a init capacity network. 3

Corollary 4.1. A nmaxiinumn density subgraph can be found in R).C. U

There is a slight difference in the tyl)es of approximations achieved by our two algo-
rithmis. The first approximation constructs a graph which is a supergraph of tHDSk(G).
The maxinmmi density sulbgraph is an al)proxiniation to HDS,1(G), where d= IS(G).
The maximunii density subgraph is not necessarily a supergraph of !IDSa(G). In the fol-
lowing example, HDS,.(G) is the entire graph, while the maximunin density subgraph is
just the cotl)onent on the right.

"..

4.6. Number Problems

One class of i)roblenis where apl)roxiimation is 1)artioilerly ilmiortlant is nuitber I)rob-
Ielns. A nunber )robleni is one in which arbitrary sized integers can be I)art of the p)roblen.
For exani )e, the nuimbers cold (e weights of edges or (:oeflicients oflinear constraints. It
is quite coninion for nuinmer probl ,ems to have nattiral approxiiimations. For I)roIlenIs that
have an objective function which is being optized, an approxilnate solution is one that is
close to the optinunt. Number prollems can be al)l)roxiluated in other ways as well. For
examl)le, an al))roximate solution to a )acking 1)roblemi could be one where the constraints
are violated by a smuall aniount. Somie number problems can be solved efficiently if the
numbers are small. Problems of this type can often be approximnate(l I)y lnodlifying the
l)roblem by truncating the values, solving the modified problem exactly, and then relating
the solution of the imodified l)robleni to an approxinate solution of the original I)roblem.
In this section we give a colmlle of exaniples of prohleiis where this technique is used in
)arallel aploxination algorithms.

The first problemn that we look at is network flow. This probleim illustrates how the
difficulty in a )roblemi can be caused by the presence of large numbers. The problem of
determiining a maximimni flow in a network is P-complete IGSSJ. The I'-commmpleteness proof
uses large integers as cal)acities to encode the circuil, value l)roblni. If the capacities are
bounded by a polyno1iial in the number of edges, then the problem can l)e solved in R .C
1KUW]. We show that for every c > 0, a flow that differs by a factor of at imUost I f c fromll
the inaximnuni flow can be found in RVC.

55



S.r

Theorem 4.7. For any c > 0, inaxinuimn flow can be approxinated to a factor of 1 c E by

an Z.k C algorithm.

Proof: Let G = (V, E), IVI = n, be an instance of network flow with edge capacities c,
, for each e, e E. Suppose that the maximum flow has size f. We give an RVC algorithn

that finds a flow of size f where f - i < cf. The basic idea in the approximation

algorithm is to truncate the values of the edge capacities so that they can be represented
by numbers with O(log n-log r) bits. The modified flow problem can then he solved using

the Karp-U)lfal-Wigderson matching algorithm.

First we need bounds on the maximum flow f. Let c be the maximuni capacity such

that there is a path from s to t using only edges of capacity at least c. The network itmust

have a cut that is made up of edges with capacity at most c, so f < n 2 c. Since there is

a path fron s to t with edges having capacity at least c, c < f. Since the flow is at most

n 2c, there is a maximun flow where no edge carries flow of more than n2 c, so any edge

with capacity greater than n 2 c cani be replaced by an edge with capacity exactly n 2c.
Let j max(0, [log C. _I). We now create a new network with capacities Ci

2i [c:2-'J. This is setting the j least significant bits of each capacity to 0. Since the

largest capacity is at most cn 2, the number of significant bits in the modified capacities is

at lost [logcn 21 -j < [log cn 2l- log ±-,J 5 I - 4 log n - log . The problen can then

be solved in O(logk n log ) time to get an approximate flow f. The most that the approx-

imate flow f could differ front the original flow f is f-- f < , C1 c, < n 0 n-c<gf.

Thiis the algoritlimt achieves tie desired approximation. 3
A second nunber Imrol)leli that can 1)e al)l)roximated is list scheduling. Tlis is a

si iiple ,schieduling problem that involves schiediuling jobs oil two processors. Tile proble I

is:

Giveii a list of jobs j , ,,, each with an execution hlme I(j,) CX , construct

ia two processor sclhedile such tlia, J? is started no later It han , and tIere is no
idle time until after all jobs have been started.

A list schedule can be computed by considering the jobs in order and assigning a job to

the first processor that becomes available. The problem of comtputing a list schedule is

P-complete [MI]. The P-completeness proof requires the use of large numbers for the job

tinmes. The comtputation of a circuit is encoded by the times that the jol)s are scheduled,

with certain bits of the timies corresponding to the values of the gates. However, the

prol)lei can be solved by it fast parallel algorithmmmi if the nmlmmmibers are smiall. llehmibold and

Mayr JIlM I] have slhowm that. if Ole job timies are bounded by L(n), tien a schedule can

be conluted in O(hog L(n) hog n) time using O(n 2 ) processors.

For list scheduling, we define an approximate solutioi to be a schedule that has the

sante first come, first served property as a list schedule, but we allow idle time between
the jobs. The simaller the total idle timie, the better the approxiltatiou. U sing an VC

algorithm ito cOniplute a list schedule for prollems with smiilll job times, we can coistrtct

an NC algorithmi to approximate list scheduling with the idlc time ;li arbitrarily small

fraction of tile schedule length.
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Theorem 4.8. For all c> 0, list scheduling can be approximated by an M.C algorithm
such that thc proportion of the idle tinec is less thanz E.

Proof- The algorithm for approximating it list schedule rounds the job times up so that
they inntipls o wih O(Iog n) significant bits and then solves the niodified problem

exactly. Let 11, . . . , j,, l)C a list of jobs with job timecs 1(0,), and let c > 0. Let t be

the largest of the job timies. If t <',the problemn cam l) solved exactly in M1C, so
stippose t > . Suppose 2 k < <! K k 1-1. We create a mnodified problem with job times

2~ k - q -k -(1) 2  The mnodified prolbleni can be solved exactly, and then the jobs of the
original lprolleiii can be scheduled at the Chiles of the modified p)roblem. The idle time after
job jis run is at most t(j) < 2". The total idle timec is at mlost n2k < n~- te.
Since the length of the schedule is at least t, the proportion of idle time is at most C.

The approximation algorithms for network flow and list scheduling both depend on
being able to solve the Iprobleis elliciently when the numbers are smnall. However, some

* Iprob~lems rmain dlifficult when the iiiinihers are smnall. In the theory of NP-comipleteness, a
distinction is iniade between we(Lkly atd strongly Nl -coinplete problenis in order to classify
mumber problenis. If an NP)-comiplete j1rollein remiains NP-comiplete when restricted to
instances of the probleni involving only siiall flunibers, it is NPl-comnplete in the strong
senLse, while if it can be sol ved in lpolyiioniial timec when the numbers are smnall, the p)roblem
is NP-coinlecte in the weak sense. We can inake the samec distinction for P-comiplete
p~rob~lems.

- Definition 4. 1. A P -coinplete prohliin is strongly P-conwlete if there exists a polynomial

1) such th" iepolllremjains t'-coniplete when restricted to instanaces I with tlnc largest

A P-coi lete problemn that is not, a nun ber probleni , stich ais the circuit, valuec prob-
1cmn is P-comiplete in the strong sense, so thne dlistinictionl is only iinterestin g for numiber
jprobleIins. Ali imnportant, exain )le or a ma nber JprolbleiI that is I)-coinplete in thne strong

* ~~sense is hi near prograini liti ng. l'i near progralnnirg is a nu ninher problem since the cocfi-
cients of the equations can be arbitrary integers. Cook has shown (see [lilt)), that the

-~~ 1)roblei of dletermining if at set or linear iniequalities has a solution is P-complete. This
prob~lenm reniains P-comiplete when thne coefficienits are restricted to -+ 1 and - 1, so linear
programmning is P-comiplete in the stroiig Sense. In light of this result, .a fast parallel ap-
proximiation for linear programmiing is unlikely. Ian the niext section we present another

* strongly h'-coinphete p~rob~leim.

4.7. First Fit Bin Packing

In this section andl thne next, we ex.aaniiue the prolbleni of coi )ntilig a first fit decreasing
(FII)) bin p~acking. We show that, the problent is strongly I)-conipletc, arid that thne

prolcn cal be ap~proxiimated in a reasonable sense. The binl packing probleni is:
Given a list of iteis U L-- 1 , ... ,It,, With sizes Su)< I for u, c U1, find an
assigni unt of the itenns to unit capacity bills sticli that the nunanber of biiis used
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is as small as possible. Tile sumi of the sizes of the items assigned to a bin must
be at most one.

For ease of exposition, we refer to .5(u,) just as u,. Binl packing is a well known NP'-compillete
problem [CJ3]. Sequential approximation schemes to bin packing have been developed and
extensively analyzed [GJ31. An important approximation algorithmn for' binl packing is thle
first fit algorithmn. First fit considers the itemis one at a timte, and p~laces echd itemi in the
first bin with enough room. If Cte list is sorted so Chat the items are non-increasing, then

ii.the algorithmn is first fit decreasing (FFD), and if the list is sorted so that the itenis are
non-decreasing, Cte algorithm is first fit increasing (FF1). Ani FF1 packing is withbin of
optimal andl anl FF1) packing is within 'of optimal.

The result of this section is that it is P-coniplete in the strong sense to compute an
FFD packing. The problem of comfputing an lF'l) packing is at number problem, since the
items may have arbitrary sizes. However, our result, shows that this problem is dlifficult
even if the item sizes are "small." Many P-complete number problems, such as network flow
and list scheduling are only P-complete in the weak sense. This is one of the first results
that shows a number p)roblemt to be P-compilelte in the strong sense. The result shows that
the source of thle dlifficulty in computing anl FF1) packing is from time arrangement of items
in the binls ats opphosedl to being fronti the nummbers involved ill the problem.

'Ihe strong P-comipleteness result suggests that a scaling approach is not likely to lead
to a good app~roximlationl to an FF1) packing. Hlowever, in the next section we show that a

* reasonable approximation to an FF1) packing can be computed by an N.C algorithmn. We
show that. if thie item sizes are hounided below by a constant, then the FF1) packing can

lbe compju tedl in O(log n) time. This gives uts ain )1C algorithmn to compu te at packing that
obeys thle samne pe(rformtance hound ats anll 'l) packing.

coplete.

Proof- Thel( proof is a reduction front thle imonotone circuit value prollcII. Thei reduction
* ~~has two stages. 'Ilie first, stage reducies Lite i monotone ci rcummit value proleut to com pu tinig
* an lF'l) packing into binls of variable size (the sizes of the binls aire specified ats p~art of the
* instance). The second stage reduces computing anl FED packing into bins of variable size

to commputimng anl FF1) packing into unit cap~acity bins.
Let 63 f~ . /, be a monotone circuit. We transform P3 into a non-increasing list

* of itemmis and~ at list of bins. There is a distinguished item) and a distinguished bin F). The
itent is p~laced in b by a first, fit p~acking if and onily if thle output of the circuit is true.

For each gate there is at list, of items anid at list, of bins. 'Ill(! items and~ b~ins are ordered
by gate number, so if I < j, tile itemmus andh bins for gate f3, come before tile itenis and bills
for gate /3*Among the items for gate /3, are two pairs of items, T,, T1' and r,,, E; which

4 indicate thme values of the inputs to the gate. Exactly two of thmese items are placed by the

first fit packing in Cte bins for fl,, Cte other two are p~ackedl in bills for lower numbered
gates. T'le two that are p~lacedl iii the bins for /3, give the valume for Ctme inpumts to tile gate.
If thle output of the gate /3i is Connected to thle gates /3,, and 13k, Ctie binls for /3i get eithuer

7' , ' or I,',, Pk', deenig upo Citevue o tie gate. If 7' and 'F,. are p~lacedl in Cte bills
fo r /3,then thle gates fli and A3 receive false values for Pi~.
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5E

66,

rT- Tk '

bi 8 6i -- 8E

6, 26i - 8 2 6 ,- IOE 6b + 6 i 
6  1+h6

-8c -- 84 El

Packing for AND gate 83, with one true input and one false input

Suppose there are n gates in the circuit. Let 6i = 1 - and c The items
n+(n+1)

for gate /3i have sizes:

6, 6,, 6- 4E, 6,- 4f, 26,- 4c, 6 i -5c, 6- 5E, 6,- 8c, 6,-- 8c.

The first four itemns are T',, Ti,, F,, and F, respectively. The list of items is non-inicreasing.
The bins for an AND gate /3i with outputs to /3, and /k have sizes:

6,, 26, -- 8c, 26i -10c, bi +6bj - 8c, bi A- k- .

The bins for an OR gate 8i, with outputs to )3j and /3 k have sizes:

26i - 8f, bi, 26i - 10c, 6i + bj - 8E, i -+ k -8E.

The first two bins evaluate the value of the gate anlI the last three bills prol)agate tihe
value. Packings of the AND gate for the inputs TT amid TF are illustrated ill the figure
below. The OR gate is similar. For gates 13i that have a constant input, either a T or a
1, is deleted to give the gate the right iniput.

bi - 8
F* i

bjj --

T. T4c - C

6, 26i - 8c 26i - 10c 6,- 6,j i 6A;
-8( -8f

Packing for AND gate fl with two true inputs
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To finish the p~roof, wc give a reduction of FFD packing with variable bin sizes to an

FF1) packing with unit capacity bins. Let ul,. .. , U be a list of items and bl,. . ., b, be
a list of bins. We construct a list of decreasing itenis V 1 ,. .,V2, which when packed into

bills of size C leave space bi in the i-tli bin. The packing of u1 ,.. , into bj, . . .,b, is
transfornied into packing v 1 , . . . ,V2,, . - Uq into bins of size C. Thle sizes can then be
norinalized to give a packing into unit capacity bins.

Let b be the largest of the bi's and C 1 (2r -j I)b. Without loss of generality we

assumec that. all the b, 's have size greater than 0. The sizes of the itemls are:

C J - ib-- bi, ifit'<r;
*~ -t jC ib, if i >.

The itenis vi and V2r+1i aire p~ut into the i-th binl, leaving bi enipty space. The list

V1,...V2r is non- increasing.
The largest numiber involvedl in the redtiction is polynomnial in the size of the circuit,

so thie proof shows that it is strongly P-comiplete to comipute ani FFD packing.

4.8. Approximating an FED packing

A thotigli it is probably not, possible to comipute a first fit dlecreasi ing packing in A4 C,
a. we can ;Lpproxiiiiate a first fit, (decreasing packing iii a reasonable senls(!. We sh~ow that if

the( sizes of all of tile i t-eiis are at. least klthen tit nFD I pack inig can be coinpuited in )1 C.
'Fliis we (:ai lindl a packing tat, agrees withl' VI) on all of tite big itejins. As a corollary to

our resuilt, we shlow how to c:onstru~ct a p~ackinig in JVC thiat. obeys the samie jperforniance
bound11( as IT 11.

Our algorithmn for coiiipuiting ant FFDI packing of itemis of Size at, least I is relatively
sillipIle. Thle basic idea is to (lecoilipose the problenm into a series of packinig Jproblemns that

have a sintJple structure. We show that Lte niuber of subproblcms is indlepenident of the
numnber of' itemis in the list, aflithogh it does (depend upon k.

The F'FD algorithmn is b)roken inito phases, with~ the j-th phase packing all of the itemns
in the interval [2,V ;jT, ). Thle bills which are filled to at least 1 23, cao eo s

meinl thle J-tl hijlase, So they are.( ignmoredl for the lliase. The bins whmich are filled to less than

1 -., fConsist of groups of consecutive bins in which the amtount of reitmainimig space
is increasing, as is illustrated in the figure b~elow. We prove that thle wnmber of groups
is bouinded by a constant depending onl j bt not on the nuiler of items. The packing

into groups is (lone sequientially, first iby packing into the first, group, then into t-le second

group, atid so on. Tile routine Pack comiputes thic packing of Retus of size 12w' 2') it
list of increasing sizedh binls in O(log n) time. The dletails of Lte routine Pack are described
below. Tlhec algorithmt EI) runs inl O(Iogrt) Lttle sinlce the numnber of phases and the
nuniber of calls to Pack is constant.
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Bins filled to at most 1 - I

FFD(U =Ulf-., u,);

begin
for j 1-to k -1 do

begin
(j <- {u- E U <ui : }

Let B' be the sublist of bins filled to less than 1 - _-_-T
2.1Divide B' into groups of consecutive bins such that the empty space in each group is

increasing.
for cach group G do

Pack(Ui, G); -

end
end. J

rhe major subroutine of our bin packing algorithm is to pack a dec reasing list of items
U u1 , ... ,ul with ui G [C , j ) into an increasing list of bins. The reason that this
packing i)rol)lei is easy to solve is that the resulting )acking has a simnl)e structure. The
number of itenis placed in the lins increases with bin no umber. The routine consists of a
numuber of phases. rhe i-th phase packs consecutive bins that can fit i items each. The
items are taken from the start of the list and packed i per bin until a bin is encountered that
fits i+1 items. Some of the bins that received i items can accommodate one additional item
from further down the list. These items are added and then the next phase is run using the
remaining items and the remaining bins. In the example below, the items u4 , ,Uo ae --.

placed in consecutive bins by the second phase, and the item u1 4 fits in the bin containing
u8 and uo0. When packing items in the range [2,, 2 , 1 , there are fewer than 2i+1 phases
since io more than 2t ' - I items can be placed in a bin. A )lase can easily be itplemtented
to run in O(logn) time.

Pack(U = u,... ,uB = b,...,b,,)
begin
fori:= Ito k do

begin
Find ssuch that u(, )ill ' urvi ! br < u(r )ull +-."+u~1 i forr < sand
U -iII + .. .I-+ )I l)i 1 1 b. 1z.

Place the items ui,... u,i into the bins bt,..., b.
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bipuhn oerfmlowie to ardsn therhihe bymeck is

Remove the placed items from U and the filled bins from B and renumber time lists.
end

Tend floiglma establishes that Pack computes a first fit packing.

Lemma 4.7. Let U =11L,. ,un be a decrasing list of' items with ui C -, YA-r) and
B =-b1 . .. Ibill be an increasing list of ins witlh b,,, < 1. 'l'Ii routine Pack compu)Ites a
first fit decreasing packing or U1 into B.

Proof: The p)otential place for the algorithmn to be incorrect, is in the placemewnt of the
s groupJs of Z' itemns each in the first, s bins of B. Suippose an item u' that is placedl in a
bin b_ r < s actually (it in a bin br', r' < r. So ut~ + + u(,l+l)i i- u' < b,,. But,

Uri+1 + ± Ur(i+1) + Ur(i+I)+I 5 Ur~i+1 + + U(rI)i + U' < b,, < br I[ence, r > s.

In order to prove that our algorithin for constructing an FFD packing of itemns of
size at least ! is a fast parallel algorithmn, we imst show that the numnber of groups ofk
bins encountered in the algorithmn is b~oundled by at constanit. We prove a slightly stronger
result thani we nieed by showing that the constant is in tact only Iolynomial in k. rhuis
our algorithmn remains an .AIC algorithmn even if k is somne slowly growing function in n,
such as log n.

We inust now show that the numnber of groups of consecutive bins that time algorithml

considers when packing items of size greater than k' is bounddb tCntn k u
p~roof shows that this constant is 0(k0). We pr~ove the theoreni by keeping track of the
nuinber of intervals of bins of increasing size at the start of each l)hlase. We can bound the
increase in the nmber of intervals by conisidlering in sotute detail Lte way Rim are packed
into the bins.
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F: Let U i ,... ,un be the list of items and B b1 , ... ,b,, be the list of bills. We
denote the amount of space left in bin bi at a given time by s(bi). This value depends
upon the phase of the packing. The projection of a packing onto a subset B' of the bins
is the set of items U' that are placed into tile bins B'. It is a folk theorem of bin packing

that U' is packed into B' by a first fit packing in exactly the same manner as the items U'
are packed in the full packing. A 1-projection is the projection of the packing onto the

set of bins b, such that s(bi) > -. In the j-th phase, when we pack iteis in the interval

E[k, 2, ,1 ), we only consider the 2 -projection of the packing up to that point.
The major portion of this proof is accounting for groups of bins with increasing space.

Basically, an interval is a set of consecutive bins with remaining space increasing. However,

for bookkeeping reasons, we break up the intervals at powers of two, so all bins of an
interval have space in [#, 2, 1 ) for some j. We also relax the condition that the bins are

consecutive; we allow some bins with less space to be between the bins of the interval.
Finally, we insist that our intervals are maximal, so that bins cannot be added to an
interval without violating one of the defining properties.

Definition 4.2. A -- interva is a set of bins bit,..., bi, such that:
1. 2 < s(b) < s(b,) <)... < s(bi) < t

2. Let bl,...,b,,, be the bins of the -Ly-projection of the packing. The image of

bi.., bi is a set of consecutive bins b... b,

3. s = I or s(b,_,) > s(t,).
4. s + r - I :m or s(b,+r) > J or s(b.,+,) < s( ,+r_,).

An important detail in our definition of an interval is that. we allow intermediate bins
to have less space than the bins of the interval. The figure below shows a situation that
might occur. The n interval is separated by an interval of bins with nuich less space. The
reason that we allow this in our defilition, is that we (10 not want to subdivide the bins

too early, or else we generate too miany intervals.

2,%

. 23
1 1

Each -iinterval is assigned a weight of 2- -2i . We Show that tile still of the weights
... :of tile intervals is 0(43) at the start of phase j.This allows its to Imo iml the nuinber of

2gro'ps of consecutive bins that we consider in the algorithm.
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We begin by examining the packing of items in the range 12,' 22,) into a set of
consecutive bins with increasing space in the range [H, -, ). Iere, we assume that the
bins are fully packed, meaning that after the items are placed, none of the bins have moreI
than I- space. This is the type of packing that is performed by the routine Pack described
above.

The items that are packed can be divided into two types of items, the forward items
and the fill-in items. The routine Pack places items r per bin frot the front of the list
until a bin is encountered that can hold at least r + 1 items, then the routine looks ahead
in the list of items and finds additional items that can fit with the items placed r per bin.
The items placed in groups from the front of the list are the forward items, and the items
placed by looking ahead in the list are the fill-in items.

If we just look at the forward items, then the bins are divided into runs of bins with
increasing space. The set of bins that receive the same number of items forms a run. The
number of runs formed is at most 2' - 2Y _ 3 2'. The amount of space left in a bin is21 21 2 Tat most -, so the weight of each run is less than E-,>j 2 -2j =- 2-21. The total weight

islsstan~2'4-2j 2 2
is less than 3 2 < 2-1 if j > 1. Thus the weight is not increased by the
forward packing.

We now consider packing items of size [ ,, ) into an increasing list of bins of size

[r,-T). This covers the fill-in items.

Lemma 4.8. The mninber of !-intervals generated by a packing of itemis of size - )2' 21 221

into an interval of size [1, 1 ) is at most 2'
23 211121

Proof: [1et b1,...,b 7,, be the 7-l-, -projection of the packing. A reversal occurs when an
itemn u, I is placed in a lower numnbered bin than the previous item u,. 'ach .- interval
(except possibly the first, one fornied) begins with a reversal. let u, j be the lirst item of
at - -interval, and sippose it was placed in the bill b. 'ere is at least. space left inl

after u , t is placed. Since ui did not lit in b.k, ui -- I A-- < u,. Thus, each ,!,i-interval
other than the first, one accounts for a gap of nOilor than in lhe item sizes. Since the

dilference between the first and the last item is at most - r, the number of '--intervals
223

is at most 2.
22

The weight of the resulting packing is bounded by -i> 2-2 = 2.2 2j. The weight
is at most double the weight of the original interval.

The j-tit phase of the algorithm packs the items in the range [, , so for the
j-th phase, we can neglect all of tip bins with space at most '2,. Suppose the weight

at the start of phase j is wj. Since the -' -intervals have weight 2 2 , there are at most
22iwj intervals to consider. However, since these intervals might overlap, some of them
may have to be split. If a ;-interval encloses a 1--interval, (i < I < j), then we split the
outer interval. The number of intervals that are added is bounded by thme original number
of intervals. At most 2 • 2 'w . intervals need to be considered in packing fhe j-th phase.

The packing of the forward iRens in the ',-intervals (I K j) does not increase the
total weight, except when a bin is only p~artially filled. At imost one bill is partially filled
by a phasu, so this adds at most a constant to the weight. (The constant is in fact at
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most j.) In computing the weight, the forward packing can be considered before the.
splitting of intervals, since the forward packing cost does not depend on the bins being
consecutive. The splitting of intervals can double the number of 1--intervals, so this can
double the weight. The weight is again doubled by packing into the 1--intervals. Hence

w511 <4w3 + . Since = 1, we have wj <_ 4.4 -3
When the items packed all have size at least 1, there are at niost log k phases. The

weight is then O(k 2) at the end of the algorithm, so the number of groups of bins considered
in the final phase is O(k 4). Thus, we have the following theorem:

Theorem 4.10. The algorithm FFD computes a first fit decreasing packing of items of h.*

size greater than in O(log n) time.

We can use our algorithi to construct a packing that obeys the same performance
bound as FFD. The algorithun for doing this combines a first fit decreasing packing and
a first fit increasing packing. The algorithm first packs all items that are in the interval
[1, i) using a first fit decreasing packing, and then packs the remaining items using a first
fit increasing packing. Let LD(!) be the length of the first fit decreasing packing and .-

OPT(I) be the optinal packing for a list I of items. First we show that this packing is
relatively close to optimal.

Theorem 4.10. The length of the composite packing L() satisfies

Lc;(I) < minx(LD(1), 5OPT(I) + 1) < -OPT(I) + 4
5 9

Proof: Let L be the length of the FFD packing of the items with size greater than _.
6" ,

Clearly L < L,.(I), so if all the items are placed in the first. L bins, thei Lc:(l) < LD(!).
If imore tian L bins are used, then all bims except for possibly the last one is filled to at
least'" so L,:(l) < 9OIT(L) + 1. I

rhe first lit increasing part of the packing can be done fairly easily with a fast parallel
algorithm. The following lennna sketches how an FF1 packing is conlputed.

Lemma4.0. A first lit increasing packing into variable sized bins can be computed in JVC.

Proof: The property that an FFI packing has that makes it easy to conhlpute with a fast
parallel algorithm is that the order of the items in the bins is the samie is the initial order
of the items in the list. The key part of conputing the F11 packing is to identify the first
item placed in each bin. One way this can be done is to coniptte for each bin b3 and each
itemi u,, the first itein available for bin bj I assuining that u, is the first itemi available
for bil bj. The first item for each bin can then he comiputed using path doubling. This
algorithm can be implemented to run in 0(log n) time using O(n2 ) processors. I

The conposite packing is conplluted ly partitioning the itens iito the iteis of size at
least and the items of size less than 1.I rhe first group is placked usinig tie FF1) algorithm,
and the second group is packed using FFI. A similar parallel algorithli for conuniting a
packing that obeys the saine perforinance bound as I.TD has been independently discovered
by Warinuth [War].
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4.9. Discussion

The results on approximating P-complete problems are similar to approximation re-
suits for NP-complete problems. Our results in this chapter illustrate a number of points of
similarity. Our result on approximating the high degree subgraph problem shows that it is
possible to get tight bounds on the degree of approximation that is feasible by an MIC algo-
rithm assuming that P 5 AIC. This result parallels a number of results on approximating
NP-complete problems with parallel algorithms. Some P-complete number problems can
be solved in ./C when the numbers involved are small. Efficient parallel approximation
schemes can often be found for problems of this type. Other number problems remain
difficult when they are restricted to instances that involve small numbers. The notion
of strong P-completeness captures this, being analogous to strong NP-completeness. The
problem of computing an FFD bin packing is strongly P-complete. This problem can still

be approximated in a reasonable sense, since an FFD packing can be computed in )IC if
the sizes of the items are bounded below by a constant.
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